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Abstract

In machine learning, probabilistic models are usually divided into discriminative
and generative models. While the former often achieve higher accuracy on
large datasets, the latter are designed to incorporate more extensive informa-
tion. Moreover, the decision whether to use a discriminative or a generative
model is a fundamental problem in large-scale applications due to safety-related
aspects. To address this problem, we extend upon the results of [Kuleshov
and Ermon (2017)] and instantiate Hybrid Discriminative-Generative Models
(HDGMs) with Residual Neural Networks (ResNets) and Variational Autoen-
coders (VAEs). The resulting Deep Hybrid Models (DHMs) are examined with
respect to three robustness metrics relevant to safety, namely the Expected
Calibration Error (ECE), the Out-Of-Distribution (OOD) detection, and the
adversarial robustness in the context of the Fast Gradient Sign Method (FGSM).
We show that DHMs achieve comparable results to supervised ResNets and
unsupervised 𝛽-VAEs on well-known image recognition benchmark datasets,
that is, Street View House Numbers (SVHN) and CIFAR-10. Furthermore, we
demonstrate that DHMs are subject to the same problem as deep generative
models in near-OOD detection tasks. This suggests that the multi-conditional
objective of DHMs does not provide a solution to the problem of assigning higher
likelihood values to near-OOD samples associated with deep generative models.
Finally, we show that the ability of DHMs to interpolate between discriminative
and generative approaches does not lead to significant improvements in ECE
and adversarial robustness.
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Zusammenfassung

Im Bereich des maschinellen Lernens werden probabilistische Modelle in der
Regel in diskriminative und generative Modelle unterteilt. Während erstere
oft eine höhere Genauigkeit bei großen Datensätzen erreichen, sind letztere
darauf ausgelegt, umfangreichere Informationen zu berücksichtigen. Darüber
hinaus stellt die Entscheidung, ob ein diskriminatives oder ein generatives
Modell verwendet werden soll, aufgrund von Sicherheitsaspekten bei groß an-
gelegten Anwendungen ein grundlegendes Problem dar. Um dieses Problem
anzugehen, bauen wir auf den Ergebnissen von [Kuleshov and Ermon (2017)]
auf und realisieren Hybrid Diskriminative-Generative Models (HDGMs) mit
Residual Neural Networks (ResNets) und Variational Autoencoders (VAEs).
Die resultierenden Deep Hybrid Models (DHMs) werden im Hinblick auf drei
sicherheitsrelevante Robustheitsmetriken untersucht, nämlich den Expected
Calibration Error (ECE), die Out-Of-Distribution (OOD)-Detektion und die
adversarial robustness im Kontext der Fast Gradient Sign Method (FGSM).
Wir zeigen, dass DHMs vergleichbare Ergebnisse wie überwachte ResNets und
unüberwachte 𝛽-VAEs auf bekannten Benchmark-Datensätzen zur Bilderken-
nung, nämlich Street View House Numbers (SVHN) und CIFAR-10, erzielen.
Darüber hinaus zeigen wir, dass DHMs bei der Aufgabe der Erkennung von
near-OOD Bildern demselben Problem unterliegen wie tiefe generative Modelle.
Dies deutet darauf hin, dass die multikonditionale Zielfunktion von DHMs
keine Lösung für das Problem der Zuweisung höherer Wahrscheinlichkeitswerte
für near-OOD Bilder bietet, das mit tiefen generativen Modellen verbunden
ist. Und schließlich zeigen wir, dass die Fähigkeit von DHMs, zwischen dem
diskriminativen und generativen Ansatz zu interpolieren, nicht zu signifikanten
Verbesserungen des ECE und der adversarial robustness führt.
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1 Introduction

In this introductory chapter, the objective of this thesis is motivated and
formulated. Subsequently, the content of the individual chapters is summarized
to provide an overview of the work.

1.1 Motivation

Over the past decade, machine learning has made tremendous progress, espe-
cially with the advancement of deep learning. Its success story spans many
areas where other methods have seemingly reached their limits. The resulting
widely recognized relevance of deep learning has led to an astonishing increase
in knowledge and peer-reviewed publications [Zhang et al. (2021)].

One of the best known successes of the last decade is the use of deep learning for
computer vision. More specifically, the most widely recognized breakthroughs
were initially achieved in image classification or recognition [Krizhevsky,
Sutskever, and Hinton (2012)]. The techniques inspired by deep learning
not only surpassed state-of-the-art methods, but also proved to surpass human-
level on some restricted visual tasks [He, Zhang, Ren, and Sun (2016)]. This
has led to the increasing use of deep learning models for computer vision in
industry, which has enabled a number of new applications such as self-driving
cars, medical image analysis, detecting defective parts in manufacturing, and
many more [Zhang et al. (2021)].

However, the success story is not limited to computer vision. Important con-
tributions of deep learning can also be found in the area of natural language
processing. Natural language processing includes various tasks such as trans-
lation, text generation, and semantic or sentiment analysis, to name a few.
Especially in recent years, state-of-the-art deep learning models like BERT
[Devlin, Chang, Lee, and Toutanova (2019)] or GPT-3 [Brown et al. (2020)]
could be developed, which incorporate so-called transformers [Vaswani et al.
(2017)]. According to leading technology companies like Microsoft and Google,
these models have been integrated into search engines and are used by billions
of people [Zhang et al. (2021)]. Other broad areas where deep learning has
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led to breakthroughs include speech recognition [Deng and Li (2013)], playing
complex games [Berner et al. (2019)], and drug development [Senior et al.
(2020)], among many others.

But despite the astonishing advances in deep learning, major concerns have been
raised about artificial intelligence safety in view of its large-scale application
[Amodei et al. (2016)]. One of the safety-related issues concerns the robustness
of Deep Neural Networks (DNNs) employed in mission-critical tasks. In
computer vision, which is the focus of this thesis, the term robustness has
taken on many definitions. Most commonly, robustness in this particular field
is defined as robustness to adversarial examples [Szegedy et al. (2013)]. In
addition to the above, we follow a broader interpretation and add calibration
[Guo, Pleiss, Sun, and Weinberger (2017)] and Out-Of-Distribution (OOD)
detection [Bishop (1994)] to the definition of robustness, as suggested by
[Grathwohl et al. (2019)].

Recent studies have shown that while deep discriminative models have achieved
human-level performance on limited image classification tasks, the predicted
probability estimates diverged from the true correctness likelihood [Guo, Pleiss,
Sun, and Weinberger (2017)]. In medical image analysis, for example, models
are supposed to indicate whether the decision associated with a particular
image may be incorrect. If a model’s decisions can be successfully labeled as
“potentially inaccurate”, human intervention can be initiated. In addition, state-
of-the-art deep generative models tend to fail in detecting images that come
from a different distribution than the training data. Consequently, a classifier
will silently assign one of the classes from the training data to the image
[Nguyen, Yosinski, and Clune (2015); Nalisnick et al. (2018)]. Considering that
distributional shifts are common in real-world applications, this questions the
reliability and safety of such employed models.

In machine learning, models are often divided into discriminative and generative
approaches, depending on which probability distribution is being approximated
[Ng and Jordan (2001)]. In addition to the two approaches mentioned above,
there is also the hybrid approach. Kuleshov and Ermon have developed a flexible
framework to combine discriminative and generative models into so-called
Hybrid Discriminative-Generative Models (HDGMs) [Kuleshov and Ermon
(2017)]. Due to its flexibility, modern deep learning models can be integrated,
leading to models, that we refer to as Deep Hybrid Models (DHMs).

Chapter 1. Introduction
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1.2 Objective of the thesis

The underlying architecture of DHMs is based on coupling both discriminative
and generative models via latent variables. In addition, the optimization
requires a multi-conditional objective that may be useful for the robustness
considerations mentioned above due to inherent regularization effects. The
question considered in this thesis is whether DHMs equipped with Residual
Neural Networks (ResNets) [He, Zhang, Ren, and Sun (2016)] and Variational
Autoencoders (VAEs) [Kingma and Welling (2014)] lead to better performance
metrics for robustness in terms of Expected Calibration Error (ECE), OOD
detection and adversarial robustness in the context of the Fast Gradient Sign
Method (FGSM).

The results are compared to those obtained with the respective components
of the DHMs, namely supervised ResNets and unsupervised VAEs. Moreover,
since DHMs are able to interpolate between the discriminative and generative
approaches, the results are compared to the purely discriminative setting
of DHMs to see if the multi-conditional objective provides advantages over
the purely discriminative objective. To this end, all investigated models are
trained with the same training configurations on well-known image recognition
benchmark datasets and evaluated with respect to the performance metrics.
To the best of our knowledge, there is no previous work that considers the
analysis of DHMs with respect to any of the above robustness metrics.

1.3 Outline of the thesis

Following this introduction, the outline of this thesis is as follows.

In Chapter 2, the basic concept of probabilistic modeling is introduced, as well
as the division between probabilistic discriminative and generative modeling.
In addition, probabilistic models parameterized by Neural Networks (NNs)
relevant to this work are outlined. Then, the general framework of Deep Latent
Variable Models (DLVMs) and the related Problem of Approximate Inference
(PAI) is presented. Finally, VAEs , which are commonly used to solve the PAI,
and the corresponding objective function are derived as well as the extension
to 𝛽-VAEs [Higgins et al. (2017)].

Chapter 3 presents the underlying framework of HDGMs and the associated
multi-conditional objective function. Moreover, two hyperparameters are
introduced, which allow interpolation between the discriminative and generative

Objective of the thesis
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approaches. The last section of Chapter 3 presents our specific implementation
of DHMs with ResNets and 𝛽-VAEs.

The robustness metrics regarding ECE, OOD detection and adversarial robust-
ness are presented in Chapter 4. Furthermore, the binary classification problem
associated with OOD detection is highlighted, as well as the FGSM commonly
used to study the adversarial robustness of discriminative models.

Chapter 5 deals with the numerical experiments conducted on various image
recognition datasets. In addition, specific questions are formulated to which our
numerical experiments contribute to. Subsequently, the results of all studied
models are presented and analyzed in detail.

Finally, in Chapter 6, the thesis closes with a summary of the main findings
and a general conclusion regarding the robustness of DHMs. In addition,
potential drawbacks of the experimental setup as well as possible future research
directions regarding DHMs are pointed out.

Chapter 1. Introduction
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2 Probabilistic Modeling

In this chapter, the concept of probabilistic modeling is introduced and cat-
egorized into discriminative and generative approaches. Furthermore, the
respective strengths and weaknesses of discriminative and generative modeling
are highlighted to emphasize the extension to hybrid models, which attempt
to combine the advantages of both methods. Additionally, recent advances in
Variational Inference (VI) are presented in the context of Variational Autoen-
coders (VAEs), which are incorporated in the Deep Hybrid Models (DHMs) in
Chapter 3.

2.1 Probabilistic Models

To start with, the class of machine learning algorithms, which we will focus
on, aims to approximate the probability distributions of natural or artificial
phenomena from data. Since modeling intrinsically captures only a small
fraction of the underlying processes, probabilistic models formulate the in-
herent uncertainty via probability distributions. Probabilistic models play
an important role in pattern recognition tasks, such as the classification of
unknown data or to obtain a better understanding of the phenomena [Bishop
(2006)].

One common problem discussed in this chapter is the problem of density
estimation. Consider an observed variable x ∼ 𝑝*(x), where x ∈ R𝑑 is a
random sample from the underlying unknown probability distribution 𝑝*(x).
Let all observed samples be collected in the dataset 𝒳 = {x(𝑖)}𝑛

𝑖=1 with 𝑛 ∈ N.
We wish to find an approximation 𝑝𝜃(x) with parameters 𝜃 ∈ R𝑝 such that

𝑝𝜃(x) ≈ 𝑝*(x)

for any observed variable x ∈ 𝒳 . Here, the subscript 𝜃 is used to denote
that the approximation 𝑝𝜃(x) is parametrized by 𝜃. Most commonly, the
goal of density estimation is achieved by learning the parameters 𝜃. Once
𝑝𝜃(x) is learned, it can be used for many purposes, e.g., sampling or outlier
detection [Bishop (1994)]. That being said, the fundamental difference in
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discriminative and generative modeling lies in the chosen distribution that is
being approximated.

2.1.1 Probabilistic Discriminative Models

If we choose to learn the conditional probability 𝑝𝜃(y|x) over the labels y ∈ 𝒴
given the observations x, we obtain a discriminative model. In other words,
discriminative models aim to predict the labels y from observed features x via
a conditional model

𝑝𝜃(y|x) ≈ 𝑝*(y|x) .

Given 𝐶 ∈ N different class labels, y can be considered to be a real-valued
vector of size 𝐶, where all entries are zero except one. The non-zero entry
is set to one and indicates the class of the corresponding observed variable
x. In classification or regression problems, such models are learned through
supervised learning. Typically, in the paradigm of supervised learning one
attempts to find a parametric function, Φ𝜃 : 𝒳 → R

𝐶 , which maps each
datapoint to so-called logits. These logits are used to approximate the posterior
utilizing the softmax transfer function, i.e.,

𝑝𝜃(𝑦𝑖|x) = exp(Φ𝜃(x)[𝑦𝑖])∑︀
𝑖

exp(Φ𝜃(x)[𝑦𝑖])
, (2.1)

where Φ𝜃(x)[𝑦𝑖] denotes the logit corresponding to the 𝑖th label. The parametric
function Φ𝜃 is learned by minimizing the negative log-likelihood,

min
𝜃

−E𝑝*(x,y)[log 𝑝𝜃(y|x)] , (2.2)

which can be derived from the categorical cross-entropy loss [Goodfellow,
Bengio, and Courville (2016)]. Minimizing the cross-entropy loss is analogous
to the minimization of the Kullback-Leibler divergence (KL divergence) between
𝑝𝜃(y|x) and 𝑝*(y|x) [Liu and Abbeel (2020)]. Note, that the true posteriors
are encoded by one-hot vectors with non-zero entries for the respective class.

Common examples of probability models relevant to this work are parametrized
by differentiable feed-forward Neural Networks (NNs). For example, we use
Fully Connected Neural Networks (FCNNs), see Definition 2.2 based on [Berner,
Grohs, Kutyniok, and Petersen (2021)].

Definition 2.1 (Neuron). Let 𝑑 ∈ N be the input dimension. An (artificial)

neuron is defined as the mapping 𝑓 : R𝑑 → R, 𝑓(x) = 𝜚

(︃
𝑑∑︀

𝑖=1
𝑤𝑖𝑥𝑖 − 𝑏

)︃
, where

Chapter 2. Probabilistic Modeling
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𝑤 = (𝑤1, . . . , 𝑤𝑑) ∈ R𝑑 and 𝑏 ∈ R denote the weights and bias, respectively.
Moreover, we refer to 𝜚 : R→ R as the (non-linear) activation function.

Definition 2.2 (Fully Connected Neural Network). Let 𝐿 ∈ N be the number
of layers and 𝑁 = (𝑁0, . . . , 𝑁𝐿) ∈ N𝐿+1 denote the number of neurons in each
layer. The underlying architecture of a FCNN is described by 𝑎 = (𝑁 , 𝜚). For
𝑙 = 1, . . . , 𝐿, the weight matrix and bias vector of the 𝑙-th layer of the directed
acyclic graph are denoted by 𝑊 𝑙 ∈ R𝑁𝑙×𝑁𝑙−1 and 𝑏𝑙 ∈ R𝑁𝑙, respectively. Let
𝑃 (𝑁) := ∑︀𝐿

𝑙=1 𝑁𝑙𝑁𝑙−1 + 𝑁𝑙 be defined as the total number of parameters. In
correspondence to the underlying architecture 𝑎, the realization of the FCNN is
given by the mapping

Φ𝑎 : R𝑁0 ×R𝑃 (𝑁) → R
𝑁𝐿 ,

satisfying Φ𝑎(x, 𝜃) = Φ(𝐿)(x, 𝜃) and

Φ(1)(x, 𝜃) = 𝑊 (1)x + 𝑏(1)

Φ̄(𝑙)(x, 𝜃) = 𝜚
(︁
Φ(𝑙)(x, 𝜃)

)︁
, 𝑙 ∈ {1, . . . , 𝐿 − 1} 𝑎𝑛𝑑

Φ(𝑙+1)(x, 𝜃) = 𝑊 (𝑙+1)Φ̄(𝑙)(x, 𝜃) + 𝑏(𝑙+1) .

Note, that the activation function 𝜚 is applied element-wise. The dependence
of 𝜃 is also given by the subscript as in Eq. (2.1) and is used interchangeably.

However, many other architectures have been established in the field of proba-
bilistic modeling. Particularly, modern Deep Neural Networks (DNNs) using
architectures other than FCNNs as in Definition 2.2 have proven to surpass
human-level performance on various challenges and thus have become relevant
for mission-critical tasks, e.g., self-driving cars or medical image analysis [He,
Zhang, Ren, and Sun (2015); Fauw et al. (2018); Levinson et al. (2011)]. By
DNNs, we refer to NNs with 𝐿 > 2, i.e., multiple hidden layers. One major
contribution of DNNs is given by the award-winning Residual Neural Networks
(ResNets) [He, Zhang, Ren, and Sun (2015)].

Residual Neural Networks. ResNets are typically based on convolutional
operators with compactly supported filters [LeCun, Bottou, Bengio, and Haffner
(1998)]. The filters aim to extract features of the input, which incorporate affine
transformations and element-wise nonlinearities. The affine transformations
depend on parameters 𝜃, also called weights, as in Definition 2.2. Learning
weights in the context of supervised learning is formulated as an optimization
problem, e.g., given in Eq. (2.2).

Probabilistic Models
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Fig. 2.1: Illustrative example of a residual block with the identity layer added to the
𝑙-th layer. The mappings Φ and Φ̄ are according to Definition 2.2.

Leaving aside the convolution operator, the main difference between a FCNN
and a ResNet is the additional identity layer that can be added to the 𝑙-th
layer by the following redefinition,

Φ̄(𝑙)(x, 𝜃) = 𝜚
(︁
Φ(𝑙)(x, 𝜃)

)︁
+ Φ̄(𝑙−1)(x, 𝜃) ,

for the simplified case of 𝑁𝑙 = 𝑁𝑙−1 [Berner, Grohs, Kutyniok, and Petersen
(2021)]. This constitutes a so-called residual block. A sketch of such a residual
block can be seen in Figure 2.1. In this illustrative example, the identity layer
is added to the 𝑙-th layer.

Typically, the number of learnable layers within a ResNet is referenced. For
instance, a ResNet with 18 learnable layers is called ResNet-18. Static layers
such as max-pooling layers are usually integrated, but not referenced [Ioffe and
Szegedy (2015)]. Note, that the ResNet architecture can be utilized for both
supervised and unsupervised learning and thus provides a versatile tool for
modeling probabilistic models.

Challenges of Discriminative Deep Neural Networks. As mentioned above,
discriminative modeling can have disadvantages compared to other modeling
approaches. Some issues, which will be discussed in more detail in Chapter 4,
are as follows:

• The requirement of large labeled datasets poses a limitation on the adop-
tion of discriminative models parametrized by DNNs. The annotation of
large datasets by humans, which are obligatory for DNNs to achieve high
accuracy and generalization, can be very expensive and thus infeasible.
Generative models have been shown to be competitive with discriminative
models in terms of accuracy on small datasets [Ng and Jordan (2001)].

• Another problem associated with discriminative DNNs is the poor cali-
bration of modern architectures. By calibration, we refer to confidence

Chapter 2. Probabilistic Modeling
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calibration, which is a measure of how accurately the predicted probabil-
ity estimates represent the true correctness likelihood [Guo, Pleiss, Sun,
and Weinberger (2017)]. Although the accuracy of recent classification
networks has improved drastically, the ability to indicate whether the
model might be incorrect has suffered [Lakshminarayanan, Pritzel, and
Blundell (2016)].

• Moreover, a serious issue concerning discriminative DNNs is their vulner-
ability to so-called adversarial attacks [Szegedy et al. (2013)]. Adversarial
attacks are inputs to discriminative models that are deliberately intended
to negatively influence the classification.

2.1.2 Probabilistic Generative Models

Probabilistic generative modeling, on the other side, aims to learn a model
𝑝𝜃(x, y) that approximates the true joint distribution 𝑝*(x, y) over x, y ∈
𝒳 × 𝒴. Thus, more complex information is inherent in the generative model,
which enables the model to answer more general queries such as imputing
or denoising x ∼ 𝑝𝜃(x) as well as predicting unknown labels by utilizing
Bayes’ rule [Kuleshov and Ermon (2017)]. As mentioned above, one prominent
domain of generative models is semi-supervised learning. Since the annotation
of data by humans can be very expensive, many problems do not provide
sufficient labeled data for supervised methods to approach their asymptotic
error effectively [Ng and Jordan (2001)]. Given the circumstances of a larger,
yet unlabeled dataset, generative models can leverage unlabeled data to improve
its generalization [Zhu and Goldberg (2009)]. Moreover, generative models
approach their asymptotic error in terms of accuracy much faster in comparison
to discriminative models [Ng and Jordan (2001)]. Further recent and impactful
advances in generative modeling can be found in the field of language modeling,
image generation, language pre-training, and vision pre-training [Goodfellow
et al. (2014); Radford et al. (2019); Zhou et al. (2020)].

All of these contributions have incorporated generative models parametrized
by DNNs. However, if predicting unknown labels is the only objective, dis-
criminative models tend to obtain higher accuracies for large labeled datasets
since the model parameters are used more efficiently [Kuleshov and Ermon
(2017)].

Probabilistic Models
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2.2 Latent Variable Modeling

The problem of density estimation can be approached by latent variable models.
Latent variable models are an extension to fully-observed models discussed in
the previous section. The motivation for latent variable models originates from
the idea that all datapoints from a given dataset may lie close to a manifold of
lower dimensionality compared to the original high dimensional space [Bishop
(2006)]. Many of the aforementioned advances in generative modeling make
use of this idea.

Let x ∼ 𝑝𝜃(x) be the observed variable and let z ∼ 𝑝𝜃(z) be the latent variable.
The marginal distribution 𝑝𝜃(x), also called marginal likelihood or model
evidence, over the observed variables, is given by

𝑝𝜃(x) =
ˆ

𝑝𝜃(x, z) dz , (2.3)

where 𝑝𝜃(x, z) is the latent variable model. Such compound probability distri-
butions provide great flexibility for modeling. In the case of discrete variables
z and a Gaussian distribution 𝑝𝜃(x|z), one would obtain a mixture-of-Gaussian
model. If we choose z to be continuous, 𝑝𝜃(x) can be considered to be an
infinite mixture [Kingma and Welling (2019)].

The goal of density estimation is approached by maximizing the log-likelihood
of the given dataset. We assume that the datapoints are independently
and identically distributed and hence, the log-likelihood of the dataset
𝒳 = {x(1), . . . , x(𝑛)} can be simplified to the sum of each log-likelihood, re-
spectively, i.e,

log 𝑝𝜃(𝒳 ) =
∑︁
x∈𝒳

log 𝑝𝜃(x) . (2.4)

The objective is to find the parameters 𝜃 such that Eq. (2.4) is maximized.
Since DNNs have proven to be well suited for probabilistic modeling, we will
consider latent variable models 𝑝𝜃(x, z) whose underlying distributions are
parametrized by DNNs. Such models will be referred to as Deep Latent Variable
Models (DLVMs) [Kingma and Welling (2019)].

2.2.1 Problem of Approximate Inference

The optimization of the objective function Eq. (2.4) is typically done via Stochas-
tic Gradient Descent (SGD). Modern DNNs are often trained on large datasets
to achieve high accuracy and better generalization. However, optimization
concerning all datapoints simultaneously is inefficient. Therefore, only small

Chapter 2. Probabilistic Modeling
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batches of the dataset, which are randomly selected in each step, will be used
for the computation of the gradient [Bottou (2004)]. To optimize the objective
function in Eq. (2.4), one needs to compute the marginal likelihood efficiently.
Unfortunately, Eq. (2.3) is typically intractable, due to the required integration,
which does not provide a closed-form analytical solution. Moreover, numerical
integration techniques are not applicable, because of the high dimensionality
and the complexity of the integrand [Bishop (2006)]. Thus, a central task
of latent variable models is to solve the Problem of Approximate Inference
(PAI).

The Problem of Approximate Inference. Let x ∈ 𝒳 be observed variables
and z ∈ 𝒵 latent variables. The joint probability over x and z is given by
𝑝𝜃(x, z). Given the joint probability, Bayes’ theorem states that the conditional
probability 𝑝𝜃(z|x) can be formulated as follows,

𝑝𝜃(z|x) = 𝑝𝜃(x, z)
𝑝𝜃(x) . (2.5)

According to Eq. (2.5), the intractability of the denominator 𝑝𝜃(x) is related to
the intractability of 𝑝𝜃(z|x). If one can compute either 𝑝𝜃(z|x) or 𝑝𝜃(x), the
other probability can be evaluated as well. Hence, the PAI consists of finding
an approximation of the conditional probability 𝑝𝜃(z|x), which is tractable.
Note, that the joint probability can be factorized by

𝑝𝜃(x, z) = 𝑝𝜃(z)𝑝𝜃(x|z) , (2.6)

where each factor is specified and thus the evaluation of 𝑝𝜃(x, z) is tractable.

Various methods have been developed to solve the PAI associated with latent
variable models. A common family of techniques, which attempts to approx-
imate the posterior 𝑝𝜃(z|x) by formulating the problem as an optimization
problem, are known as Variational Inference (VI) methods. An impactful
contribution in the field of VI, which we will focus on, are so-called VAEs
[Kingma and Welling (2014); Rezende, Mohamed, and Wierstra (2014)]. In the
following, the idea of VI methods is presented using VAEs as an example.

2.3 Variational Autoencoder

The previous section dealt with DLVMs and the PAI. Recent advances in VI
allow computationally efficient approximations of the posterior distribution

Variational Autoencoder
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𝑝𝜃(z|x) and thus constitute an important building block of Deep Hybrid Models
(DHMs) discussed further down in Chapter 3.

Let the prior over the latent variables of the VAE be given by the multivariate
isotropic Gaussian

𝑝𝜃(z) = 𝒩 (z; 0, 𝐼) ,

where 𝐼 ∈ R𝑚×𝑚 denotes the identity matrix. The intractable posterior in
Eq. (2.5) is approximated by VAEs through a parametric inference model
𝑞𝜑(z|x), also called encoder or recognition model [Kingma and Welling (2019)].
Accordingly, the posterior 𝑝𝜃(x|z) given in Eq. (2.6) is called a decoder. A
schematic representation of the underlying architecture of VAEs is shown in
Figure 2.2. Notice, that the variational parameters of the encoder are denoted
by 𝜑 ∈ R𝑝. Employing SGD, the variational parameters 𝜑 are optimized such
that

𝑞𝜑(z|x) ≈ 𝑝𝜃(z|x) .

Similar to DLVMs, the encoder and decoder can be parametrized by DNNs.
Let 𝒩 (𝜇z, 𝜎2

z𝐼) be a multivariate Gaussian distribution with mean 𝜇z ∈ R𝑚

and standard deviation 𝜎z ∈ R𝑚. A common choice is to assume that the
approximate posterior 𝑞𝜑(z|x) is parametrized by the multivariate Gaussian
distribution

𝑞𝜑(z|x) = 𝒩 (z; 𝜇z, 𝜎2
z𝐼) ,

cf. [Kingma and Welling (2014)].

In
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Encoder qφ(z|x) Decoder pθ(x|z)
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µz
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Fig. 2.2: Schematic representation of the underlying architecture of VAEs. The input
x is encoded into latent variables z by sampling from 𝑞𝜑(z|x) = 𝒩 (z; 𝜇z, 𝜎2

z𝐼). These
variables are then decoded to yield the reconstruction x̂ ∈ R𝑑.

The weights and biases of the encoding NN, indicated by 𝜑, are optimized to fit
the mean and standard deviation such that the true posterior is approximated.

Furthermore, the variational parameters of VAEs are optimized with respect to
all datapoints, i.e., the variational parameters are shared across all datapoints,
which is known as amortized inference [Kingma and Welling (2019)]. Therefore,
optimization methods such as SGD can be utilized to handle large datasets
efficiently.

Chapter 2. Probabilistic Modeling
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2.3.1 Evidence Lower Bound

The objective function of VAEs is given by the Evidence Lower Bound (ELBO).
The derivation of the ELBO can be done in various ways, most commonly using
Jensen’s inequality. However, we follow the derivation provided in [Kingma
and Welling (2019)], which does not make use of the Jensen inequality.

The log-likelihood of a given observation x can be rewritten as follows,

log 𝑝𝜃(x) = E𝑞𝜑(z|x) [log 𝑝𝜃(x)] (2.7)

= E𝑞𝜑(z|x)

[︂
log

[︂
𝑝𝜃(x, z)
𝑝𝜃(z|x)

]︂]︂
(2.8)

= E𝑞𝜑(z|x)

[︃
log

[︃
𝑝𝜃(x, z)
𝑞𝜑(z|x)

𝑞𝜑(z|x)
𝑝𝜃(z|x)

]︃]︃
(2.9)

= E𝑞𝜑(z|x)

[︃
log

[︃
𝑝𝜃(x, z)
𝑞𝜑(z|x)

]︃]︃
+ E𝑞𝜑(z|x)

[︂
log

[︂
𝑞𝜑(z|x)
𝑝𝜃(z|x)

]︂]︂
. (2.10)

We obtain Eq. (2.7), because the log-likelihood can be considered to be constant
in the expectation with respect to the approximate posterior 𝑞𝜑(z|x). Moreover,
Eq. (2.8) is obtained due to Bayes’ rule given in Eq. (2.5). The second term on
the right-hand side in Eq. (2.10) is the KL divergence of the approximate from
the true posterior, i.e.,

E𝑞𝜑(z|x)

[︂
log

[︂
𝑞𝜑(z|x)
𝑝𝜃(z|x)

]︂]︂
= 𝐷KL(𝑞𝜑(z|x)||𝑝𝜃(z|x)) .

By definition the KL divergence is non-negative,

𝐷KL(𝑞𝜑(z|x)||𝑝𝜃(z|x)) ≥ 0 ,

and zero if and only if, the two probability distributions are identical. Due to
the non-negativity of the KL divergence, the first term on the right-hand side
of Eq. (2.10) is referred to as individual-datapoint ELBO ℒ𝜃,𝜑(x), i.e.,

log 𝑝𝜃(x) ≥ ℒ𝜃,𝜑(x) = E𝑞𝜑(z|x) [− log 𝑞𝜑(z|x) + log 𝑝𝜃(x, z)] . (2.11)

The above individual-datapoint ELBO is equivalent to the more common
formulation

ℒ𝜃,𝜑(x) = E𝑞𝜑(z|x) [log 𝑝𝜃(x|z)] − 𝐷KL(𝑞𝜑(z|x)||𝑝𝜃(z)) , (2.12)

where −E𝑞𝜑(z|x) [log 𝑝𝜃(x|z)] is known as the expected reconstruction loss
[Kingma and Welling (2014)].

Variational Autoencoder
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The optimization of the lower bound is done with respect to both 𝜑 and 𝜃.
Similar to Eq. (2.4), the ELBO of the dataset can be written as the sum of the
individual-datapoint ELBOs of each observed variable, i.e.,

ℒ𝜃,𝜑(𝒳 ) =
∑︁
x∈𝒳

ℒ𝜃,𝜑(x) .

In contrast to other traditional VI methods, the joint optimization of 𝜑 and 𝜃
can be achieved by utilizing the SGD [Kingma and Welling (2019)]. However,
since the required differentiation of the objective function with respect to the
model parameters includes expectations, an approximation of the gradient
∇𝜃,𝜑ℒ𝜃,𝜑(x) is required.

The gradient ∇𝜃ℒ𝜃,𝜑(x) can be estimated directly by a Monte Carlo estimator.
However, the gradient regarding the variational parameters 𝜑 is more compli-
cated, due to the expectation, which is taken with respect to the distribution
𝑞𝜑(z|x). In this non-trivial case, the approximation of ∇𝜑ℒ𝜃,𝜑(𝒳 ), obtained
by a simply Monte Carlo estimator, yields a high variance, which is inefficient
and thus impractical [Paisley, Blei, and Jordan (2012)]. A better approach
to obtain an estimation of the required gradient with lower variance is called
the Stochastic Gradient Variational Bayes (SGVB) estimator proposed by
[Kingma and Welling (2014)]. The SGVB estimator incorporates a so-called
reparametrization trick, which allows us to efficiently approximate the gradient
with respect to 𝜑 such that the SGD algorithm can be utilized.

2.3.2 Reparametrization Trick

In order to introduce the SGVB estimator, we first need to introduce the
reparametrization trick. The reparametrization trick provides a way to back-
propagate the gradient through Gaussian distributions and can be considered
to be a technique to obtain a change of variables. Let 𝜀 ∈ R𝑚 be a random
auxiliary variable sampled from 𝑝(𝜀) = 𝒩 (𝜀; 0, 𝐼), which is independent of x
and 𝜑. The auxiliary variable 𝜀 ∼ 𝑝(𝜀) is used to avoid the non-deterministic
sampling process of z ∼ 𝑞𝜑(z|x) by expressing the continuous latent variable
via the differentiable transformation

z = 𝑔𝜑(𝜀, x) .

Note, that the differentiable transformation 𝑔𝜑 is parametrized by the varia-
tional parameters 𝜑. Also recall, that the posterior is approximated by

𝑞𝜑(z|x) = 𝒩 (z; 𝜇z, 𝜎2
z𝐼) ,

Chapter 2. Probabilistic Modeling
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where the mean and standard deviation (𝜇z, 𝜎z) are the outputs of the encoding
NN. Given the mean and standard deviation, we obtain a random sample
z ∼ 𝑞𝜑(z|x) by the following equation:

z = 𝑔𝜑(𝜀, x) = 𝜇z + 𝜎z ⊙ 𝜀 ,

where ⊙ denotes the element-wise product of two vectors. Meanwhile, we avoid
the sampling process of the latent variable from the underlying distribution
𝑞𝜑(z|x).

z

φ x φ x

Before
Reparametrization

After
Reparametrization

ε

z

Fig. 2.3: Illustrative sketch of the reparametrization trick. Rectangles represent deter
ministic nodes, while circles represent random nodes. On the left side, latent variables
are randomly sampled from 𝑞𝜑(z|x). On the right-hand side, the reparametrization
trick was applied, resulting in a deterministic node for z.

With the above reparametrization trick, there are two possibilities to obtain
the SGVB estimate. Firstly, for 𝑀 ≥ 1, the expectations in Eq. (2.11) for a
single datapoint can be estimated by

ℒ𝜃,𝜑(x) ≃ ℒ̃A
𝜃,𝜑(x) = 1

𝑀

𝑀∑︁
𝑙=1

log 𝑝𝜃(x, z(𝑙)) − log 𝑞𝜑(z(𝑙)|x) ,

where z(𝑙) = 𝑔𝜑(𝜀(𝑙), x) and 𝜀(𝑙) ∼ 𝑝(𝜀). The symbol ≃ denotes unbiasedness
of the estimation.

The alternative estimate ℒ̃B
𝜃,𝜑(x) can be derived from the expression of the

ELBO given in Eq. (2.12). The KL divergence in Eq. (2.12) can be calculated
analytically, if the underlying distributions are parametrized by Gaussian
distributions [Kingma and Welling (2014)]. Thus, an estimation of the KL
divergence 𝐷KL(𝑞𝜑(z|x)||𝑝𝜃(z)) is not necessary in our case. Given the an-
alytical integration of the KL divergence, the SGVB estimate of the ELBO

Variational Autoencoder
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ℒ𝜃,𝜑(x) ≃ ℒ̃B
𝜃,𝜑(x) can be written as follows,

ℒ𝜃,𝜑(x) ≃ 1
2

𝑚∑︁
𝑖=1

(︁
1 + log(𝜎2

z,𝑖) − 𝜇2
z,𝑖 − 𝜎2

z,𝑖

)︁
+ 1

𝑀

𝑀∑︁
𝑙=1

log 𝑝𝜃(x|z(𝑙)) ,

where 𝑚 denotes the dimensionality of z.

2.3.3 𝛽-VAE

Another desired property of DLVMs or VAEs is to generate latent variables
𝑧, where each variable 𝑧𝑖 is disentangled or factorized, i.e., the latent variable
is sensitive to only one single factor and relatively insensitive to others. An
advantage often associated with a disentangled representation is that it is easy
to interpret and generalize to a variety of tasks.

Following the framework of VAEs, 𝛽-VAEs was proposed as a modification
to improve the ability of VAEs to obtain disentangled latent representations
[Higgins et al. (2017)]. The modification is done by introducing an adjustable
hyperparameter 𝛽 ∈ R to the original VAE objective in Eq. (2.12) as follows,

ℒ𝜃,𝜑(x, 𝛽) = E𝑞𝜑(z|x) [log 𝑝𝜃(x|z)] − 𝛽𝐷KL(𝑞𝜑(z|x)||𝑝𝜃(z)) .

The original objective is obtained for 𝛽 = 1. Higher values for 𝛽 encourage
the model to learn more efficient representation and promote disentanglement.
However, this may also lead to a trade-off between the quality of the recon-
structions and the degree of disentanglement. For an in-depth study of the
disentangling properties of 𝛽-VAEs, we refer to [Burgess et al. (2018)].

Chapter 2. Probabilistic Modeling
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3 Hybrid Discriminative-Generative
Modeling

The choice of whether to use a discriminative or generative model is a fundamen-
tal problem in machine learning. To address this problem, Kuleshov and Ermon
have come up with a novel framework for Hybrid Discriminative-Generative
Models (HDGMs) that can interpolate between a purely discriminative and
a purely generative approach [Kuleshov and Ermon (2017)]. In this chapter,
we introduce the general concept of HDGMs as well as the architecture of our
Deep Hybrid Models (DHMs).

The general idea of HDGMs as proposed in [Kuleshov and Ermon (2017)] is
related to a common approach of specifying a joint probability model 𝑝𝜃(x, y)
and assigning different weights to the posterior 𝑝𝜃(y|x) and the marginal
probability distribution 𝑝𝜃(x) during the training [McCallum, Pal, Druck, and
Wang (2006); Lasserre, Bishop, and Minka (2006)]. However, these models are
limited due to the two following requirements.

• Firstly, the tractability of the computation and optimization of 𝑝𝜃(y|x)
and 𝑝𝜃(x) has to be provided.

• Secondly, the model parameters of both the discriminative and generative
model have to be shared, which limits the flexibility.

These requirements make it difficult to incorporate complex models, including
Deep Neural Networks (DNNs), into HDGMs.

3.1 Framework of Hybrid Discriminative-Generative
Models

The approach proposed in [Kuleshov and Ermon (2017)] does avoid the latter
requirement of sharing the model parameters. Instead of sharing the parameters
𝜃, the coupling of both models is done by sharing latent variables z ∈ 𝒵 that
are introduced into the joint probability model 𝑝𝜃(x, y, z). The latent variables
z can be considered as a high-level representation, and sharing z across both
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the discriminative and generative model can lead to improvements in accuracy
[Kuleshov and Ermon (2017)].

Consider the joint probability model

𝑝𝜃(x, y, z) ≈ 𝑝*(x, y, z)

over variables x, y, z ∈ 𝒳 ×𝒴×𝒵. The joint probability model can be factorized
by

𝑝𝜃(x, y, z) = 𝑝𝜃(y|x, z)𝑝𝜃(x, z) ,

where 𝑝𝜃(y|x, z) is the discriminative and 𝑝𝜃(x, z) the generative component.
Note that 𝑝𝜃(x, z) is not only a generative model, but a latent variable model,
as described in Section 2.2. We employ multi-conditional learning to minimize
the objective function

𝛼𝐿D [𝑝*(x, y, z), 𝑝𝜃(y|x, z)] + 𝛽G𝐿G [𝑝*(x, z), 𝑝𝜃(x, z)] , (3.1)

with 𝛼, 𝛽G > 0. The two functionals 𝐿D and 𝐿G constitute the losses of
both the discriminative and generative component and are weighted by 𝛼 and
𝛽G, respectively. Shifting weights between 𝛼 and 𝛽G yields an interpolation
between the discriminative and generative approach, and thus HDGMs cannot
be categorized by either approach. Notice, however, that in the special case of
𝛼 = 𝛽G, we obtain a purely generative model 𝑝𝜃(x, y, z).

In the following, we take a closer look at the minimization of the multi-
conditional objective in Eq. (3.1) and specify the functionals 𝐿D and 𝐿G.
Starting with 𝐿G, our goal is to obtain a model 𝑝𝜃(x, z) that approximates
the true underlying, yet unknown distribution 𝑝*(x, z). For that purpose,
any approximation of the 𝑓 -divergence [Nowozin, Cseke, and Tomioka (2016)]
between 𝑝*(x, z) and 𝑝𝜃(x, z) can be employed, i.e.,

𝐿G [𝑝*(x, z), 𝑝𝜃(x, z)] = 𝐷𝑓 (𝑝*(x, z), 𝑝𝜃(x, z)) ,

see [Kuleshov and Ermon (2017)]. Concerning the discriminative component
𝐿D, a suitable classification loss function ℓ𝜃 : R𝐶 ×R𝐶 → R can be chosen,
such that

𝐿D = E𝑝*(x,y)E𝑞𝜑(z|x) [ℓ𝜃(y, 𝑝𝜃(y|x, z))]

is minimized. Note, that the expectation over the approximate posterior 𝑞𝜑(z|x)
is incorporated, since the classification loss depends on the latent variables
z ∼ 𝑞𝜑(z|x).

Next, we further specify the model 𝑝𝜃(x, y, z) and motivate the link between
the losses 𝐿D and 𝐿G and the common learning approach of maximizing the

Chapter 3. Hybrid Discriminative-Generative Modeling
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marginal log-likelihood

log 𝑝𝜃(x, y) = log
ˆ

𝑝𝜃(x, y, z) dz

as derived in Eq. (2.3). According to [McCallum, Pal, Druck, and Wang
(2006)], the interpolation between the discriminative and generative component
is achieved by optimizing the multi-conditional log-likelihood

log
ˆ

𝑝𝜃(y|x, z)𝛾𝑝𝜃(x, z) dz (3.2)

with 𝛾 > 0. Due to the intractability of Eq. (3.2), we utilize the Variational
Inference (VI) method introduced in Section 2.3 to obtain a variational bound
as follows,

log
ˆ

𝑝𝜃(y|x, z)𝛾𝑝𝜃(x, z) dz = log
ˆ

𝑝𝜃(y|x, z)𝛾𝑝𝜃(x, z)
𝑞𝜑(z|x) 𝑞𝜑(z|x) dz (3.3)

≥ E𝑞𝜑(z|x) [𝛾 log 𝑝𝜃(y|x, z) + log 𝑝𝜃(x, z) log 𝑞𝜑(z|x)] , (3.4)

which we aim to maximize, see [Kuleshov and Ermon (2017)].

The maximization of the lower bound in inequality (3.4) can be considered to be
a special case of the previously presented objective in Eq. (3.1). Suppose that
the evaluation of 𝑝𝜃(y|x, z), 𝑝𝜃(x, z) and 𝑞𝜑(z|x) is given in closed form and
the gradients are tractable. If we choose 𝛼 = 𝛾, 𝛽G = 1 and utilize the negative
log-likelihood as well as the Kullback-Leibler divergence (KL divergence) to
approximate the loss functionals

𝐿D = −E𝑝*(x,y)E𝑞𝜑(z|x) [𝑝𝜃(y|x, z)] (3.5)

≈ − 1
𝑛

𝑛∑︁
𝑖=1

E𝑞𝜑(z|x(𝑖))

[︁
𝑝𝜃(y(𝑖)|x(𝑖), z)

]︁
(3.6)

and

𝐿G = 𝐷KL (𝑝*(x, z)||𝑝𝜃(x, z)) (3.7)

≈ − 1
𝑛

𝑛∑︁
𝑖=1

E𝑞𝜑(z|x(𝑖))

[︁
𝑝𝜃(x(𝑖), z) − 𝑞𝜑(z|x(𝑖))

]︁
, (3.8)

we obtain the multi-conditional learning framework presented in inequality (3.4).
Minimizing 𝐿D and 𝐿G encourages the model to achieve a high classification
accuracy as well as to learn a proper latent space, which can be interpreted as
the maximization of the variational bound in inequality (3.4). Additionally, the

Framework of Hybrid Discriminative-Generative Models
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joint optimization of both losses can be considered as a type of regularization,
which has positive effects on the classification accuracy [Kuleshov and Ermon
(2017)].

3.2 Deep Hybrid Models

Following the above framework of HDGMs, we instantiate the discriminative
and generative components with a Residual Neural Network (ResNet) and a
𝛽-Variational Autoencoder (VAE), respectively. The architecture of ResNets
also constitutes the backbone of our generative component [He, Zhang, Ren,
and Sun (2016)].

Input x Reconstruction x̂

Latent Variables z

pθ(y|x, z)

ResNet-18

ResN
et-1

8
ResNet-18

Encoder q
φ
(z|x

) Decoder pθ (x|z)

Classifier
Head

Fig. 3.1: A schematic view of the underlying architecture of the Deep Hybrid Model
(DHM) inspired by [Kuleshov and Ermon (2017)]. The discriminative and generative
components are highlighted in blue and orange, respectively. The latent variables
z ∼ 𝑞𝜑(z|x) are used to couple both the discriminative and generative model.

Figure 3.1 shows that both the encoder and the decoder of the 𝛽-VAE, high-
lighted in orange, are equipped with a ResNet-18. Utilizing ResNets is an
extension to the model given in [Kuleshov and Ermon (2017)], which is modeled
with simple Convolutional Neural Networks (CNNs). Furthermore, the discrim-
inative component 𝑝𝜃(y|x, z), highlighted in blue, is modeled by a ResNet-18
and a fully connected classifier head. Note, that the input of the classifier head
is a concatenation of the latent variables z ∼ 𝑞𝜑(z|x) and the output of the
discriminative ResNet-18. Thus, the latent variables contribute to both model
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components, leading to a hybrid approach. Differentiating the classification loss
in Eq. (3.6) with respect to the parameters 𝜑 and 𝜃 leads to backpropagation
through the sampling process of the latent variables. As previously discussed,
the reparametrization trick must be utilized here.

Interestingly, the number of parameters that contribute to the classification is
independent of 𝛽G. Since the true underlying distributions are unknown, we
approximate the loss functionals of the DHM by

𝛼𝐿D [𝑝*(x, y, z), 𝑝𝜃(y|x, z)] + 𝛽G𝐿G [𝑝*(x, z), 𝑝𝜃(x, z)]

≈ − 𝛼

𝑛

𝑛∑︁
𝑖=1

E𝑞𝜑(z|x(𝑖))

[︁
𝑝𝜃(y(𝑖)|x(𝑖), z)

]︁
− 𝛽G

𝑛

𝑛∑︁
𝑖=1

E𝑞𝜑(z|x(𝑖))

[︁
𝑝𝜃(x(𝑖), z) − 𝑞𝜑(z|x(𝑖))

]︁
,

where x(𝑖) ∈ 𝒳 and y(𝑖) ∈ 𝒴. If we choose 𝛽G = 0, we obtain a purely
discriminative model. However, the encoder of the 𝛽-VAE is incorporated in
the discriminative model regardless of 𝛽G. Thus, the number of parameters
that contribute to the classification is constant for all 𝛽G ≥ 0. This encourages
us to choose the purely discriminative model with 𝛽G = 0 as one baseline
among others for numerical experiments.

Deep Hybrid Models
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4 Robustness Metrics

This chapter focuses on metrics that we used to examine our models with
respect to robustness. In addition to test accuracy, three other metrics are
considered that contribute to the evaluation of robustness. First, the Expected
Calibration Error (ECE) is discussed, followed by the binary classification
problem associated with Out-Of-Distribution (OOD) detection. And finally,
the adversarial robustness in the context of the Fast Gradient Sign Method
(FGSM) is introduced and discussed.

4.1 Expected Calibration Error

In the paradigm of supervised learning, Neural Networks (NNs) provide pre-
dicted probability estimates associated with their decision. These probability
estimates indicate the confidence of the model’s decision. Although the accu-
racy of NNs has improved over the years, the predicted probability estimates
diverged from the true correctness likelihood [Guo, Pleiss, Sun, and Weinberger
(2017)]. Modern NN architectures tend to assign higher probability estimates,
which results in overconfident models. The ability to provide approximately
correct probability estimates is necessary in cases such as medical diagnosis
and self-driving cars, to name just a few examples.

A measure to analyze a discriminative model with respect to this ability is given
by the Expected Calibration Error (ECE) [Naeini, Cooper, and Hauskrecht
(2015)]. Predicted probability estimates, that are close to the true correctness
likelihood, result in a lower ECE. Thus, models with a lower ECE are considered
to be better calibrated. On the other hand, if the model shows a higher ECE,
the model is considered to be worse calibrated.

Again, let 𝒳 = {x1, . . . , x𝑛} denote the dataset and let the corresponding classes
be denoted by 𝒴 = {y1, . . . , y𝑛}. Consider the approximated posterior

𝑝𝜃(𝑦𝑖|x) = exp(Φ𝜃(x)[𝑦𝑖])∑︀
𝑖

exp(Φ𝜃(x)[𝑦𝑖])
,
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of a datapoint x ∈ 𝒳 , where Φ𝜃 : 𝒳 → R
𝐶 is parametrized by a NN. Here,

Φ𝜃(x)[𝑦𝑖] for 𝑖 ∈ {1, . . . , 𝐶} denotes the logit corresponding to the 𝑖th class.
Among all classes, the entry with the highest estimated probability results
in the predicted class 𝑦𝑖, whereas the value itself is the predicted probability
estimate. Hence, the classification provides two entities, namely the predicted
class and the predicted probability estimate.

Let 𝐾 > 0 denote the number of equally-spaced interval bins. Moreover, for
𝑘 ∈ N and 1 ≤ 𝑘 ≤ 𝐾, each interval bin is given by

ℐ𝑘 =
(︂

𝑘 − 1
𝐾

,
𝑘

𝐾

]︂
.

The set of indices of the datapoints of which the predicted probability estimates
fall into the 𝑘th interval bin is denoted by 𝐵𝑘. Now, the model’s accuracy can
be calculated for each bin 𝐵𝑘 by

acc(𝐵𝑘) = 1
|𝐵𝑘|

∑︁
𝑖∈𝐵𝑘

1(𝑦𝑖 = 𝑦𝑖) ,

where 𝑦𝑖 and 𝑦𝑖 denote the true and predicted class for the 𝑖th datapoint [Guo,
Pleiss, Sun, and Weinberger (2017)]. Let the predicted probability estimate of
the 𝑖th datapoint be denoted by 𝑝𝑖. Similarly, the average confidence of each
bin is given by

conf(𝐵𝑘) = 1
|𝐵𝑘|

∑︁
𝑖∈𝐵𝑘

𝑝𝑖 .

The model’s ECE is then defined by

ECE =
𝐾∑︁

𝑘=1

|𝐵𝑘|
𝑛

|acc(𝐵𝑘) − conf(𝐵𝑘)| , (4.1)

where 𝑛 denotes the cardinality of 𝒳 . As one can see in Eq. (4.1), the calibration
gaps |acc(𝐵𝑘) − conf(𝐵𝑘)| of each bin determine the model’s ECE. In our
numerical experiments, we chose 𝐾 = 15.

A perfectly calibrated model predicts probability estimates that are consistent
with the actual measured accuracy of the model, i.e., all gaps are equal to zero.
For illustration purposes, take a look at Figure 4.1. In Figure 4.1c, an example
of an overconfident model is given whose confidence values are higher than
the actual accuracy, resulting in confidence gaps. In contrast, the perfectly
calibrated model in Figure 4.1b shows alignment with the dashed diagonal
line. And in Figure 4.1a, the model predicted lower probability estimates than
the actual accuracy achieved and is therefore categorized as underconfident.

Expected Calibration Error
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(a) Underconfident
Model

(b) Perfectly Calibrated
Model

(c) Overconfident
Model

Fig. 4.1: Examples of histograms of an underconfident (a), a perfectly calibrated (b),
and an overconfident (c) model.

As mentioned earlier, most modern architectures in deep learning seem to be
overconfident, like the illustrated example in Figure 4.1c.

4.2 Out-of-Distribution Detection

Many machine learning models rely on the assumption, that the test data
is sampled from the same distribution as the training data. Based on this
assumption, these models are not capable of detecting whether a datapoint
might be sampled from another probability distribution. In the following, we
refer to datapoints drawn from a different probability distribution than the
training data as OOD data.

For example, a Deep Neural Network (DNN) might be trained to distinguish
images of two different classes. However, if an image x̄ ∼ 𝑝ood(x̄) does not
belong to either class, the DNN will silently assign one of the two known classes
to x̄. The model will not only predict incorrect classes, but it often does so
with high confidence [Nguyen, Yosinski, and Clune (2015)]. This particular
behavior can be harmful, when employed in real-world tasks. Thus, estimating
whether a datapoint is OOD is considered to be of great concern for artificial
intelligence safety [Amodei et al. (2016)].

OOD detection is a binary classification problem, in which the model must
provide a score

𝑠𝜃(x) ∈ R .

Our goal is to obtain higher scores for in-distribution samples than for OOD
samples. If in-distribution samples achieve higher scores, the model is able to
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distinguish the two classes by choosing a threshold that marks the decision
boundary. As a rule, the two classes are categorized as positive and negative.
In our case, the in-distribution samples constitute the set of positive examples,
whereas the OOD samples constitute the set of negative examples. To provide
an overview of the model’s decisions, the decisions are often represented in a
confusion matrix.

A confusion matrix comprises four categories, namely True Positives (TPs)
that were correctly classified as positive, False Positives (FPs) that were
incorrectly classified as positive, while True Negatives (TNs) refer to data
correctly classified as negative and False Negatives (FNs) refer to incorrectly
classified as negative. Confusion matrices can be used to construct Receiver
Operating Characteristic curves (ROC curves). The ROC curve illustrates the
ability of a binary classifier to distinguish the two classes for different thresholds.
To obtain a threshold-independent performance metric for OOD detection, the
Area Under the Receiver-Operating Curve (AUROC)1 is usually used as a
score to compare different models [Davis and Goadrich (2006); Hendrycks and
Gimpel (2016)].

OOD Detection in Supervised Learning. In supervised learning, discrimi-
native models are trained to maximize the conditional log-likelihood 𝑝𝜃(y|x)
of the given training data x ∈ 𝒳 . On this basis, it is reasonable to assume
that the conditional log-likelihood for in-distribution samples are higher than
for OOD samples [Hendrycks and Gimpel (2016)]. Therefore, we employ the
predicted conditional probability estimates as our scores 𝑠𝜃(x) to distinguish
between in-distribution and OOD samples.

OOD Detection in Unsupervised Learning. In unsupervised learning, on
the other side, generative models are often trained to explicitly maximize the
log-likelihood log 𝑝𝜃(x). Similar to the above case, it can be assumed that
the log-likelihood log 𝑝𝜃(x) is higher for in-distribution samples than for OOD
samples [Bishop (1994)]. Note, that there are generative models that do not
have explicit access to the log-likelihood, but implicit access, e.g., Generative
Adversarial Nets (GANs) [Goodfellow et al. (2014)] or Markov chain models
[Goodfellow (2016)]. However, we have included Variational Autoencoders
(VAEs) and thus have access to the approximation of log 𝑝𝜃(x). Consequently,
the approximation of log 𝑝𝜃(x) is used to distinguish between in-distribution
and OOD samples.

1[Hendrycks and Gimpel (2016)] proposed a “debatable and imprecise” interpretation of
the AUROC score as follows: ’90%–100%: Excellent, 80%–90%: Good, 70%–80%: Fair,
60%–70%: Poor, 50%–60%: Fail.’

Out-of-Distribution Detection



26

As stated above, intuitively, models should assign low likelihood values to OOD
samples. However, Nalisnick et al. first showed that that deep generative models
such as VAEs can assign higher probability values to OOD data [Nalisnick et al.
(2018)], especially at near-OOD detection tasks. Near-OOD detection is more
challenging because the classes of the OOD dataset are semantically closer to
the classes of the in-distribution dataset than those of far-OOD datasets. This
phenomenon was subsequently confirmed and further investigated in [Choi,
Jang, and Alemi (2018); Nalisnick, Matsukawa, Teh, and Lakshminarayanan
(2019)].

4.3 Adversarial Robustness

Machine learning models have shown vulnerability to adversarial attacks that
are barely visible to the human eye [Szegedy et al. (2013)]. Adversarial attacks
are inputs to discriminative models that are deliberately intended to negatively
influence the classification. While there are various approaches investigating the
adversarial robustness, we focus on a common approach called Fast Gradient
Sign Method (FGSM) [Goodfellow, Shlens, and Szegedy (2015)].

In the context of image recognition tasks, let x(𝑖) ∈ 𝒳 denote the image
and y(𝑖) ∈ 𝒴 the corresponding true label. Furthermore, let the loss of the
classification, used to train the network, be denoted by ℓ𝜃 : 𝒳 × 𝒴 → R.
Utilizing FGSM, adversarial examples can be generated by a small modification
to the original image x(𝑖) as follows:

1. We first calculate the gradient of the loss with respect to the input image
∇x(ℓ𝜃(x(𝑖), y(𝑖))).

2. Next, we apply a small modification into the direction of the gradient to
obtain an adversarial example

xadv = x(𝑖) + 𝜖 sign(∇x(ℓ𝜃(x(𝑖), y(𝑖))) ,

with 𝜖 > 0, but small.

The choice of 𝜖 determines the magnitude of the modification. Often, images
are encoded in 8 bits per pixel, such that all information below the precision
of 8 bits is discarded. Thus, an 𝜖 below that precision can be considered to
be a small modification to the original input image [Goodfellow, Shlens, and
Szegedy (2015)]. Due to the access to the parameters of the model and the
gradients, FGSM is considered a white-box attack.
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Recall, that supervised NNs are optimized to minimize the negative log-
likelihood, i.e.,

min
𝜃

−E𝑝*(x,y)[log 𝑝𝜃(y|x)] . (4.2)

From an optimization perspective, discriminative models can be trained to
be more robust against adversarial attack such as FGSM. Replacing the
negative log-likelihood by the corresponding loss function and adding an inner
maximization to Eq. (4.2), we obtain

min
𝜃

E𝑝*(x,y)

[︂
max
𝛿∈𝒮

ℓ𝜃(x + 𝛿, y)
]︂

, (4.3)

where 𝛿 ∈ 𝒮 describes the perturbation that comes from a set of perturbations
𝒮 ⊂ R𝑑 determined by the adversarial attack method used [Madry et al. (2017)].
Such strategies are primarily used to improve adversarial robustness. However,
in this thesis, we do not consider robust optimization strategies as in Eq. (4.3),
but instead investigate the adversarial robustness of our models optimized with
respect to the losses presented in Chapter 2 and Chapter 3.

Adversarial Robustness
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5 Numerical Experiments

This section deals with numerical experiments conducted on various image
recognition datasets to analyze the models with respect to Expected Calibration
Error (ECE), Out-Of-Distribution (OOD) detection, and adversarial robustness.
More precisely, the experiments contribute to the evaluation of the following
questions:

• Does the interpolation between discriminative and generative approaches
of Deep Hybrid Models (DHMs) yield any increase in accuracy or robust-
ness in terms of ECE, OOD detection, and adversarial accuracy?

• Do DHMs yield higher classification accuracies over state-of-the-art super-
vised deep learning models such as Residual Neural Networks (ResNets)?

• Do DHMs yield higher OOD detection scores via log 𝑝(y|x) compared to
supervised ResNets?

• Do DHMs yield higher OOD detection scores via log 𝑝(x) compared to
state-of-the-art generative models such as unsupervised 𝛽-Variational
Autoencoders (VAEs)?

• Do DHMs yield a lower ECE compared to supervised ResNets?

• Do DHMs yield higher adversarial accuracies compared to supervised
ResNets?

The open-source machine learning framework PyTorch has been utilized to
perform the numerical experiments [Paszke et al. (2019)]. Due to the size
of the models, the numerical experiments were required to be conducted on
Graphics Processing Units (GPUs). To accelerate the execution, the Fraunhofer
Heinrich-Hertz-Institute1 kindly provided their GPU-Cluster, enabling us to
conduct multiple experiments at the same time on Nvidia’s Tesla V100 GPUs.
In addition, to realize better reproducibility and limit the nondeterministic
behavior, all experiments were repeated 10 times and averaged with respect
to the performance metrics. Thus, in the following, we always refer to the
average and standard deviation if not other stated. Moreover, models with the

1https://www.hhi.fraunhofer.de/en/index.html
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exact same setting have been set to the same random seed to further reduce
the randomness.

Model Selection. Principally, the evaluation of Neural Networks (NNs) in-
cludes training and validation of the models. The entire learning process is
split into multiple epochs. An epoch refers to one cycle through the entire
dataset. Our experiments were conducted, such that the models’ parameters
were saved separately after each epoch. Consequently, for each experiment, we
had access to a set of candidates to choose from for further analysis. To allow
a fair comparison, we selected the candidate with the highest accuracy with
respect to the validation datasets, as we consider accuracy to be decisive. The
parameters of this candidate were used for a final evaluation and comparison
of the performance metrics on the test datasets.

5.1 Experimental Setup

In the following, we describe the basic design of the numerical experiments.
Firstly, we present the datasets and their division into training, validation,
and testing dataset. In addition, the standard data augmentation scheme
applied to the datasets is demonstrated. Finally, this section gives an overview
of the models and the configurations of the optimizer used to perform the
experiments.

5.1.1 Datasets

The numerical experiments were conducted on three widely used and publicly
available datasets for image recognition tasks, namely Street View House
Numbers (SVHN), CIFAR-10, and CIFAR-100 [Netzer et al. (2011); Krizhevsky
(2009)]. Note, however, that SVHN and CIFAR-10 constitute the in-distribution
datasets, while the OOD samples are taken from CIFAR-100, see Table 5.1. In
other words, we train our models on SVHN and CIFAR-10 and evaluate, in
the context of OOD detection, whether the model is capable of distinguishing
the trained datasets from the samples of CIFAR-100. The exact configurations
of the datasets can be taken from Table 5.1.

The SVHN dataset contains colored real-world images sized at 32 × 32 pixels.
The images consist of digits from house numbers that are taken from Google
Street View. The dataset incorporates ten classes, one for each digit, and is
originally separated into two subsets, namely 73257 images for training and
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Dataset #Classes #Training
samples

#Validation
samples

#Test
samples

In-Distribution/
Out-of-Distribution

SVHN 10 58 605 14 652 26 032 In-Distribution
CIFAR-10 10 42 000 8000 10 000 In-Distribution
CIFAR-100 100 0 0 60 000 Out-of-Distribution

Tab. 5.1: Datasets used to perform the numerical experiments.

26032 images for testing. We further divide the training dataset into 58605
images for training and 14652 images for validation. The validation dataset is
used for model selection, i.e., the parameters with the highest accuracy among
all epochs concerning the validation dataset are selected to conduct a final test
on the test dataset. Examples of the dataset can be seen in Figure 5.1.

Fig. 5.1: Examples of the SVHN dataset taken from [Netzer et al. (2011)].

The CIFAR-10 dataset consists of 60000 colored images, each with 32 × 32
pixels. For each of the ten mutually exclusive classes, 6000 images are provided.
We have split the training dataset such that 42000 images are for training and
8000 images for validation and model selection. The remaining 10000 images
are used for testing.

The CIFAR-100 dataset, as the name suggests, consists of real images of 100
classes and is commonly used for image recognition benchmark tests. Each
class contains 600 images sized at 32 × 32 pixels. We employ the CIFAR-100
dataset to obtain OOD samples for the OOD detection task. Note, that there
are no overlapping classes with the CIFAR-10 dataset. Nevertheless, the task
to distinguish the two non-overlapping datasets is considered to be difficult
[Grathwohl et al. (2019)]. Surprisingly, recent studies show that deep generative
models can assign higher likelihood values to OOD data, albeit being optimized
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to maximize the log probability of in-distribution data [Nalisnick et al. (2018);
Choi, Jang, and Alemi (2018)].

Data Augmentation. Typically, data augmentation is applied to datasets
to achieve generalization. The above training datasets were augmented by
the same standard scheme, in which the images are normalized, zero-padded
with 4 pixels on each side, randomly mirrored with a probability of 0.5 and
randomly cropped to obtain 32 × 32 images [Romero et al. (2014); Lee et al.
(2015); Huang et al. (2017)].

5.1.2 Network Architectures and Training Configuration

We divide our models into three categories, namely discriminative and gener-
ative models, and DHMs. Since DHMs can handle both discriminative and
generative tasks, we choose the discriminative ResNet-18 and generative 𝛽-VAE
in Table 5.2 as the basis for the comparison with DHMs. Moreover, the purely
discriminative setting of DHMs (𝛼 = 1 and 𝛽G = 0), which is listed in Table 5.2
as discriminative DHM, forms another baseline. In this way, we can assess
whether the regularization effect of the joint optimization (𝛼 > 0, 𝛽G > 0) is
an advantage over purely discriminative optimizations (𝛼 = 1 and 𝛽G = 0) for
DHMs.

Model Approach #Parameters Epochs Batch size Learning rate
(t ̂︀= training epoch)

ResNet-18 Discriminative 11.4M 200 512

𝜂𝑡 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
10−3, 𝑡 ∈ [0, 50] ,

10−4, 𝑡 ∈ [51, 100] ,

10−5, 𝑡 ∈ [101, 150]
10−6, 𝑡 ∈ [151, 200]

Disc. DHM Discriminative 22.6M 200 512
𝛽-VAE Generative 20.6M 200 512
DHM Hybrid 31M 200 512

Tab. 5.2: An overview of the models and their configuration for training and opti
mization.

As mentioned before, the ResNet-18 forms the backbone of our DHMs. This
is also true for the discriminative and generative models in Table 5.2. The
architecture of DHMs can be considered as a combination of the discriminative
ResNet-18 and the generative 𝛽-VAE from Table 5.2. More specifically, the
latent variables of the 𝛽-VAE are concatenated with the output of the discrim-
inative ResNet-18 and fed into a classifier header. The classifier head consists
of two fully connected layers with 200k learnable parameters and a dropout
probability of 0.5 (second to last layer) and 0.25 (last layer) [Srivastava et al.
(2014)]. For the generative and hybrid approaches, we set 𝛽 = 0.1 as this
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gave us the best results, albeit often 𝛽 > 1 is the typical choice. It should
be emphasized that although the models have the same basic framework, the
parameters are optimized based on different loss functions.

For the optimization, the Adam algorithm was used, which has become the
standard optimization method for deep learning [Kingma and Ba (2015);
Ruder (2016); Gregor et al. (2015); Xu et al. (2015)]. The initial value of the
learning rate was set to 10−3 and decreased by a factor of 0.1 every 50 epochs.
In addition, the exponential decay rate for the first and second momentum
estimates were set to 0.9 and 0.999, respectively, as suggested by [Kingma
and Ba (2015)]. More information about the configurations can be seen in
Table 5.2.

To see to what extent the interpolation between discriminative and generative
approaches offer advantages, we examine the effect of the hyperparameters 𝛼
and 𝛽G. More precisely, we set 𝛽G = 1 and 𝛼 ∈ {100, 101, 102, 103, 104, 105}
and train each configuration 10 times for 200 epochs on SVHN and CIFAR-10
from scratch. In the following, we use the labels DHM-0 to DHM-5 to highlight
the hyperparameters that were used to train the hybrid models. For example,
DHM-0 represents a DHM trained with 𝛼 = 100, while DHM-5 represents a
DHM trained with 𝛼 = 105. Higher values for 𝛼 mean that more emphasis was
placed on the discriminative approach during training. Given the architecture
of DHMs, we have access to both likelihoods, log 𝑝𝜃(y|x) and log 𝑝𝜃(x), and
compare the accuracy and resulting robustness metrics to their respective
baseline.
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5.2 Results

This section presents the results of our numerical experiments conducted on
SVHN and CIFAR-10, and is divided into subsections for each of the metrics
studied, namely classification accuracy, OOD detection, ECE, and robustness
to adversarial attacks. Note, that all results are averaged over 10 runs, with
error bars corresponding to ±2𝜎, where 𝜎 denotes the standard deviation, if
not stated otherwise. Moreover, a conclusion for each experiment is provided
at the end of each subsection.

5.2.1 Classification Accuracy

In this subsection, we report the test accuracy obtained through supervised
learning with our discriminative baselines, i.e., discriminative DHM and ResNet-
18, and our DHMs optimized using the multi-conditional objective. It should
be emphasized that the number of parameters of the DHMs that contribute to
the classification task are constant for all 𝛽G ≥ 0, although the total number
of parameters varies according to Table 5.2. This is due to the underlying
architecture of DHMs. More precisely, the additional parameters of the DHMs
represent the parameters of the decoder that are not used for classification.
Nevertheless, the parameters that are used for classification are optimized
based on different loss functions and therefore result in different solutions.

Results on SVHN. First, we examine the results in Figure 5.2 obtained by
the experiments with the SVHN dataset. In Figure 5.2a, the average accuracy
achieved by the purely discriminative setting of the DHM, the solid red line
(baseline), is higher than that of the DHMs optimized according to the multi-
conditional objective. This is in contrast to the results reported in [Kuleshov
and Ermon (2017)], where a small gain in accuracy was obtained. However, the
differences in the average accuracy of our DHMs from our discriminant baseline
are so small that they are within one standard deviation of the discriminant
baseline. Moreover, the standard deviation of the average accuracy of our
DHMs is two to four times greater than that of the discriminative DHM,
showing that some runs DHMs achieved higher accuracies compared to the
baseline. Nevertheless, we consider the average accuracy, which is slightly
below the baseline, to be decisive.

Next, we compare the results of our DHMs with the ResNet-18 baseline in
Figure 5.2b. The ResNet-18 was trained for 200 epochs each on the SVHN and
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(a) Test accuracy on SVHN with
discriminative DHM as the baseline.
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(b) Test accuracy on SVHN with
discriminative ResNet-18 as the baseline.

Fig. 5.2: Mean and two times standard deviation of test accuracy values of DHMs with
different configurations of weights 𝛼 and 𝛽G on SVHN compared to the discriminative
baselines, i.e., the discriminative DHM (left) and ResNet-18 (right). The solid red
lines, which serve as the baselines, show the averaged results of the discriminative
DHM (i.e. 𝛼 = 1, 𝛽G = 0) and the ResNet-18. The corresponding error bars of the
baselines are shown in dashed lines.

CIFAR-10 datasets with the configurations listed in Table 5.2. In Figure 5.2b,
the results for the SVHN dataset are shown. Again, the DHMs achieved lower
average test accuracy values on SVHN compared to the ResNet-18 baseline,
regardless of the discriminative strength log10 𝛼. In addition, the ResNet-
18 baseline provides the highest test accuracy with an average accuracy of
94.36% ± 0.14 among all models studied on SVHN, see Table 5.3. This means
that neither the DHM with purely discriminative settings nor the DHMs with
the multi-conditional objective could achieve higher test accuracies, even though
the DHM has almost twice as many parameters as the ResNet-18. However, it
should be noted that the differences in the average test accuracy of our DHMs
compared to the ResNet-18 are less than 0.2 percentage points.

Results on CIFAR-10. The results with respect to another well-studied bench-
mark dataset, namely CIFAR-10, can be seen in Figure 5.3. To start with, we
notice a difference compared to the experiments conducted with the SVHN
dataset. In Figure 5.3a, for example, one can see, that the average test accuracy
of five of our six DHMs exceeds the average test accuracy of the purely dis-
criminative setting. The highest accuracy among these models was achieved by
the DHM-4, which is 0.13 percentage points above baseline, see Tab. 5.3 on the
facing page. Only the DHM-2 trained with 𝛼 = 102 achieved a lower accuracy
value than the baseline model. Again, the average accuracy values shown in
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Figure 5.3a are within one standard deviation of each other, illustrating the
small differences.
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(a) Test accuracy on CIFAR-10 with
discriminative DHM as the baseline.
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Fig. 5.3: Mean and two times standard deviation of test accuracies of DHMs on
CIFAR-10 compared to discriminative DHM (left) and ResNet-18 (right).

In contrast to the small differences seen so far, there is a fairly large difference
between the DHMs and the ResNet-18 baseline in Figure 5.3b. The ResNet-18
outperforms all other examined models, with an average accuracy of 93.52%
on CIFAR-10. In addition, the average accuracy values of the DHMs do not
overlap with the error bars of the ResNet-18, indicating a significant difference.
The exact test accuracies of all models can be seen in Table 5.3.

Accuracy in %
Model SVHN CIFAR-10

ResNet-18 94.36 ± 0.14 93.52 ± 0.11
Disc. DHM 94.29 ± 0.06 92.62 ± 0.11

DHM-0 94.26 ± 0.37 92.71 ± 0.43
DHM-1 94.24 ± 0.51 92.73 ± 0.47
DHM-2 94.23 ± 0.21 92.56 ± 0.50
DHM-3 94.23 ± 0.21 92.65 ± 0.43
DHM-4 94.26 ± 0.20 92.75 ± 0.35
DHM-5 94.22 ± 0.41 92.63 ± 0.41

Tab. 5.3: Test accuracy values on SVHN and CIFAR-10.

Conclusion. Overall, the ResNet-18 achieved the highest accuracy for both
datasets. Comparing the DHMs against each other, we find that the results are
quite robust with respect to the hyperparameter 𝛼, suggesting that tuning of 𝛼
is less necessary. Nevertheless, the results are very close to each other, especially
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compared to the discriminative DHM baseline, since the error bars strongly
overlap. Moreover, it is known that NNs are sensitive to hyperparameters of
the optimizer, such as the learning rate. It is likely that numerical experiments
with configurations different from ours could lead to different findings. In
our experimental setup, we limited the number of runs for each model to ten,
selected the models with the highest validation accuracies, and performed final
experiments on the test datasets. Considering the standard deviation of the
results, the limit of ten runs might be too inaccurate. However, the experiments
are computationally expensive due to the size of the models. On the other side,
the significant difference with respect to the ResNet-18 baseline shows that
DHMs do not provide an accuracy advantage over modern NN architectures.

One final note: Given our inconsistent results comparing DHMs and their
purely discriminative setting, it is difficult to draw a conclusion from our
experimental setup about whether hybrid modeling via latent variable coupling
has an advantage in terms of accuracy.

5.2.2 Out-of-Distribution Detection

This subsection presents the results obtained by the above discriminative,
generative and hybrid models concerning the OOD detection task. First,
we study the models with respect to the obtained Area Under the Receiver-
Operating Curve (AUROC) scores. For this purpose, the CIFAR-100 dataset
mentioned above represents the OOD dataset, while SVHN and CIFAR-10
constitute the in-distribution datasets, respectively. To be precise, the models
were trained to learn either the unconditional or the conditional probability
distribution, 𝑝𝜃(x) or 𝑝𝜃(y|x), from the SVHN or CIFAR-10 dataset, depending
on whether supervised or self-supervised learning was used. The models were
then tested to see if they can distinguish the in-distribution samples from the
OOD samples based on the probability distributions.

In addition, the normalized density histograms are plotted to examine whether
the learned probability distributions are overlapping. If a model assigns higher
probability values for in-distribution samples than for OOD samples, one could
set a threshold and easily solve the binary classification problem. Intuitively,
models should assign low likelihood values to OOD samples. However, Nalis-
nick et al. first showed that that deep generative models such as VAEs can
assign higher probability values to OOD data [Nalisnick et al. (2018)]. This
phenomenon was subsequently confirmed and further investigated in [Choi,
Jang, and Alemi (2018); Nalisnick, Matsukawa, Teh, and Lakshminarayanan
(2019)].
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Results for SVHN vs. CIFAR-100. First, we examine the results in Figure 5.4
obtained with respect to the far-OOD detection task, namely SVHN vs. CIFAR-
100. This task is considered less difficult than the near-OOD detection task. All
reported values are AUROC values calculated using the conditional likelihood
log 𝑝𝜃(y|x) in Figure 5.4a and Figure 5.4b or unconditional likelihood log 𝑝𝜃(x)
in Figure 5.4c. To start with, we examine the results in Figure 5.4a, where
the DHM is compared to its purely discriminative setting. We notice that the
results are again very close to each other, i.e., the average values are within the
standard deviation of the baseline. The model that performed best based on the
average values is the DHM-4 with an AUROC value of 0.94±0.01. At the same
time, this is the only configuration of the DHM that could exceed the baseline.
However, the baseline achieved 0.93±0.01, which is only 0.01 percentage points
below the DHM-4. Moreover, the differences between the DHMs trained with
different discriminative strengths are rather small, suggesting that 𝛼 does not
need to be tuned much.

In Figure 5.4b the comparison to the ResNet-18 baseline is shown. Five
out of six DHMs achieved higher average values via log 𝑝𝜃(y|x) than the
ResNet-18 baseline. It should be emphasized, though, that the error bars are
overlapping, which highlights the inaccuracy of the experimental setup. The
only configuration of the DHM that did not exceed the ResNet-18 baseline is
the DHM-0, which can be considered a purely generative model due to the
equal weighting 𝛼 = 𝛽G = 1 mentioned above.

In Figure 5.4c, we compare the AUROC values obtained by the DHMs and the
𝛽-VAE baseline via log 𝑝𝜃(x). Note that our DHMs have both log 𝑝𝜃(x) and
log 𝑝𝜃(y|x) available, and thus are the only models in our experimental setup
that provide values for both comparisons. Interestingly, the AUROC values
via log 𝑝𝜃(x) are generally much higher than via log 𝑝𝜃(y|x), i.e., suggesting
that detecting OOD samples via log 𝑝𝜃(x) works better for our datasets. Some
models, such as the 𝛽-VAE, DHM-0, DHM-1, DHM-2, approximately achieved
an AUROC value greater than 0.996 ± 0.00. This shows that the models were
able to perfectly distinguish almost all OOD samples, considering that an
AUROC value of one is the maximum achievable value.

The most striking phenomenon we noticed is that discriminative strength
has a great influence here. In general, higher values of 𝛼 resulted in less
successful OOD detection via log 𝑝𝜃(x) according to AUROC values of the
DHMs. The models with the highest 𝛼 not only perform the worst in terms of
AUROC values, but also have a higher standard deviation. This behavior is not
surprising, since learning log 𝑝𝜃(x) is weighted less heavily when 𝛼 is increased.
Finally, the models with the highest AUROC value are both the DHM-0 and
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(a) AUROC via log 𝑝𝜃(y|x) with
discriminative DHM as the baseline.

0 1 2 3 4 5

Discriminative strength log10 α

0.920

0.925

0.930

0.935

0.940

0.945

0.950

AU
R

O
C

vi
a

lo
g
p(

y
|x

)

ResNet-18
DHM

(b) AUROC via log 𝑝𝜃(y|x) with
ResNet-18 as the baseline.
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(c) AUROC via log 𝑝𝜃(x) with generative 𝛽-VAE as the baseline.

Fig. 5.4: Results regarding the SVHN vs. CIFAR-100 OOD detection task. DHMs
are compared with baselines, i.e., discriminative DHM, ResNet-18, and 𝛽-VAE. All
values are AUROC values averaged over ten runs. The error bars correspond to two
times the standard deviation. In (a) and (b), the scores were calculated using the
conditional log-likelihood log 𝑝𝜃(y|x), whereas in (c) log 𝑝𝜃(x) was used.

the 𝛽-VAE with a value of 0.998 ± 0.00. In Table 5.4, column 2 and 3, one can
see an overview of all AUROC values achieved in the experiments.

Next, we plot the normalized histograms of the 𝑝𝜃(x) values obtained by the
𝛽-VAE, DHM-0 and DHM-5. We chose DHM-0 and DHM-5 because they have
the largest difference in weights with respect to the discriminative strength.
In addition, the former scored the best and the latter the worst according
to the AUROC values. As mentioned earlier, this is not surprising since the
classification task is weighted more heavily as 𝛼 increases, while the goal of
the generative approach is neglected.

In Table 5.5 one can see the histograms for the OOD detection. While the 𝛽-
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SVHN vs. CIFAR-100 CIFAR-10 vs. CIFAR-100
Model log 𝑝𝜃(y|x) log 𝑝𝜃(x) log 𝑝𝜃(y|x) log 𝑝𝜃(x)

ResNet-18 .934 ± .01 n.a. .841 ± .01 n.a.
Disc. DHM .939 ± .01 n.a. .835 ± .01 n.a.

𝛽-VAE n.a. .998 ± .00 n.a. .272 ± .00
DHM-0 .933 ± .01 .998 ± .00 .834 ± .01 .267 ± .01
DHM-1 .936 ± .01 .997 ± .00 .843 ± .01 .257 ± .00
DHM-2 .939 ± .01 .996 ± .00 .840 ± .01 .259 ± .02
DHM-3 .938 ± .01 .985 ± .01 .839 ± .01 .287 ± .01
DHM-4 .940 ± .01 .955 ± .03 .837 ± .01 .308 ± .05
DHM-5 .938 ± .01 .938 ± .05 .835 ± .01 .317 ± .04

Tab. 5.4: AUROC values of the OOD detection tasks. Models trained on SVHN.

VAE and the DHM-0 clearly assigned higher 𝑝𝜃(x) values for the in-distribution
samples, the DHM-5 shows weaknesses in the density estimation. Moreover,
the overlapping histograms explain the poorer AUROC result of the DHM-5.

𝛽-VAE DHM-0 DHM-5

Tab. 5.5: Histograms for OOD detection. All models are trained on SVHN. Green
corresponds to the score obtained with the in-distribution dataset SVHN and red
corresponds to the score for the OOD dataset CIFAR-100.

Results for CIFAR-10 vs. CIFAR-100. In the following, we present the results
for the CIFAR-10 vs. CIFAR-100 OOD detection task, which is considered
more difficult because the images are semantically closer than the previous
datasets. Following the order above, we start with the AUROC values in
Figure 5.5a, which are determined via the conditional probability log 𝑝𝜃(y|x).
In contrast to the SVHN vs. CIFAR-100 detection, we find that the DHMs
trained with a multi-conditional target achieves slightly higher AUROC values
for 101 ≤ 𝛼 ≤ 105 compared to the purely discriminative baseline. The best
model, the DHM-1, obtained a AUROC value of 0.843±0.1, which is 0.08±0.01
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higher than the baseline. Nevertheless, the error bars overlap, as has been
mentioned several times above.

Comparing the AUROC values in Figure 5.5b, we find that the ResNet-18
baseline outperforms almost all DHMs, except for DHM-1, which is our best
model. However, if we look at the plotted standard deviation, the differences
are very small. Moreover, as expected, the AUROC values are generally smaller
than those of the SVHN vs. CIFAR-100 detection, which is due to the more
difficult task. The exact values can be taken from Tab. 5.4 on the previous
page, column 4 and 5.
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(a) AUROC via log 𝑝𝜃(y|x) with
discriminative DHM as the baseline.
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(b) AUROC via log 𝑝𝜃(y|x) with
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(c) AUROC via log 𝑝𝜃(x) with generative 𝛽-VAE as the baseline.

Fig. 5.5: CIFAR-10 vs. CIFAR-100 OOD detection results. All values are AUROC
values averaged over ten runs. The error bars correspond to two times the standard
deviation. In (a) and (b), the scores were calculated using the conditional log-likelihood
log 𝑝𝜃(y|x), whereas in (c) log 𝑝𝜃(x) was used.

Now the results in Figure 5.5c are particularly salient. The AUROC values were
calculated using the unconditional log-likelihood log 𝑝𝜃(x). As can be seen, all
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the models examined achieved AUROC values of less than 0.5. This indicates
that the models have assigned higher log-likelihood values to the OOD samples
than to the in-distribution samples, as first reported for deep generative models
in [Nalisnick et al. (2018)]. Considering that a random classifier would achieve
an AUROC value of approximately 0.5, this is obviously not applicable in real
world tasks. The DHMs were not able to avoid this seemingly paradoxical
behavior, although the multi-conditional objective is different from purely
generative models. However, we note that there is a clear tendency for DHMs
with larger 𝛼 to provide improvements in terms of AUROC values compared
to the purely generative baseline.

To confirm that the models mostly assigned higher log-likelihoods to the OOD
samples, take a look at Figure 5.6. There you can see the histograms obtained
from 𝛽-VAE, DHM-0 and DHM-5. Qualitatively speaking, the histograms of
the OOD dataset (in red) are further to the right, i.e., the datapoints were
assigned higher log-likelihoods. Moreover, the histogram of DHM-5 suggests
that the model performed best not because it was able to better maximize
the log-likelihood of the in-distribution samples, but because it maximized the
log-likelihood of the OOD samples less.

𝛽-VAE DHM-0 DHM-5

Tab. 5.6: Histograms for OOD detection. All models are trained on CIFAR-10. Green
corresponds to the score obtained with the in-distribution dataset CIFAR-10 and red
corresponds to the score for the OOD dataset CIFAR-100.

Conclusion. Considering that the DHMs are able to provide both 𝑝𝜃(x) and
𝑝𝜃(y|x) in a single forward pass, we find that the hybrid approach does offer
some small advantages for OOD detection over the purely supervised and
unsupervised baselines. However, every discriminative model can be supported
by a separate generative model and vice versa for the OOD detection. Thus,
linking two separate models, one discriminative and one generative, would lead
to a similar result.
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For the far-OOD detection, the unsupervised 𝛽-VAE achieved the highest
AUROC value along with the DHM-4 and thus can be prioritized over the
OOD detection via 𝑝𝜃(y|x). On the other hand, the OOD detection via 𝑝𝜃(x)
is not applicable for the near-OOD detection. Neither the purely generative
𝛽-VAE nor the DHMs were able to exceed an AUROC value of 0.5 and thus
performed worse than a random classifier. This is particularly interesting since
maximizing 𝑝𝜃(x) with respect to a loss function other than the typical loss
function for 𝛽-VAEs could have led to different results. However, according
to our results, we do not consider the optimization of the multi-conditional
objective to be advantageous over purely generative models such as 𝛽-VAEs.
Additionally, we did not find a significant advantage of DHMs over supervised
ResNets, suggesting that linking a supervised ResNet-18 with an unsupervised
𝛽-VAE is as good as our hybrid approach.

The reasons why deep generative models tend to assign higher log-likelihoods
to some OOD datasets have yet to be discovered. However, we think, the same
reasons are most likely responsible for our DHMs behaving similarly.

5.2.3 Expected Calibration Error

In this subsection, we present the results concerning the ECE values obtained
by our studied models. First, we examine the results on SVHN, followed by
the results on CIFAR-10. Again, all values are averaged over ten runs, and
the error bars correspond to two times the standard deviation. We also show
the reliability histograms to illustrate the differences in the calibration of some
selected models and analyze whether these models are overconfident. And
finally, we draw a conclusion on whether hybrid modeling via latent variable
coupling yields a better calibration.

Results on SVHN. To start with, we compare the ECE values obtained by
our studied models on SVHN. For this purpose, take a look at Figure 5.6. The
discriminative DHM and ResNet-18 are shown in red and orange, respectively,
and serve as our baselines. Comparing the two baselines, we find that the
differences are insignificant. However, for DHMs trained on SVHN, varying the
discriminative strength log 𝛼 affects the ECE. The DHM-2 achieved the lowest
ECE with an error of .043 ± .001, i.e., it is best calibrated among all studied
models on SVHN. The exact ECE values are shown in Table 5.7, column 2.

Since ECE is computed according to the confidence gaps in Eq. (4.1), we do not
yet know whether the predicted probability estimates of our DHMs are higher
or lower than the achieved accuracy. To get a glimpse of this, take a look at
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Fig. 5.6: ECE values obtained on SVHN. The discriminative baselines are shown in
red and orange, respectively. All values are averaged over ten runs.

Expected Calibration Error
Model SVHN CIFAR-10

ResNet-18 .046 ± .001 .057 ± .001
Disc. DHM .046 ± .001 .064 ± .001

DHM-0 .047 ± .001 .064 ± .002
DHM-1 .045 ± .001 .063 ± .002
DHM-2 .043 ± .001 .064 ± .002
DHM-3 .045 ± .001 .065 ± .002
DHM-4 .046 ± .001 .064 ± .001
DHM-5 .047 ± .001 .065 ± .002

Tab. 5.7: ECE values on SVHN and CIFAR-10.

Figure 5.7. Examples of the ECE histograms of some selected models are shown
there. Note, however, that the values are not averaged over multiple runs,
as they are for illustration purposes only. One can see that most of the bars
are below the diagonal line, indicating that the model was overconfident and
predicted higher probability estimates than it actually achieved in accuracy.

Results on CIFAR-10. Next, we show the results regarding the ECE values
obtained on CIFAR-10. In Figure 5.8, the averaged results over ten runs are
shown. Note, that all ECE values obtained on CIFAR-10 are higher than
those obtained on SVHN, i.e., the models are worse calibrated on CIFAR-10.
Also, in contrast to the results obtained on SVHN, the ResNet-18 baseline
clearly achieved the lowest ECE. As for the difference between the DHMs
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Fig. 5.7: ECE histograms of selected models on SVHN. The gap in each bin contributes
to the ECE. The values are not averaged over multiple runs.
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Fig. 5.8: ECE values obtained on CIFAR-10. The discriminative baselines are shown
in red and orange, respectively. All values are averaged over ten runs.

and discriminant DHM baseline, we find that the differences are small and
insignificant, suggesting that hybrid modeling does not provide an advantage
in terms of calibration on CIFAR-10. Also, the clear tendency for DHM-2 to
be the best calibrated among all DHMs is not present in this experimental
setup. The exact values can be found in Table 5.7, column 3.

Conclusion. Given the results obtained with the SVHN dataset, one might
conclude that hybrid modeling via latent variable coupling may lead to a
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small advantage with respect to ECE. However, the results for CIFAR-10 show
that this is not the case. More specifically, since the ResNet-18 performed
significantly better on CIFAR-10, we do not consider DHMs to be better
suited for tasks where well-calibrated models are required. Since the ECE is
only relevant for supervised and semi-supervised learning where classification
is required, our DHMs provide reconstructions of input images that are not
necessary and contribute to higher computational costs.

5.2.4 Adversarial Accuracy

Our final experiments are dedicated to analyze the models with respect to
their adversarial robustness. More specifically, we want to find out whether
hybrid modeling via latent variable coupling yields models that are more
robust to attacks via the Fast Gradient Sign Method (FGSM). For this
purpose, we modified the input images according to the FGSM and chose
𝜖 ∈ {0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08} as the step sizes. After modifi-
cation, the models were tested to classify the manipulated images from the
SVHN and CIFAR-10 datasets. Overall, higher adversarial accuracy values
with respect to the modified inputs are considered more robust.

Results. The averaged adversarial accuracy values for both SVHN and CIFAR-
10 can be seen in Figure 5.9. Starting with SVHN in Figure 5.9a, we find that
the FGSM clearly has a very strong influence on the models’ accuracy. Even at
a step size of 𝜖 = 0.02, none of our studied models could exceed an adversarial
accuracy of 50%. Compared to the accuracy values in Table 5.3, column 2,
where FGSM was not applied, this is a notable decrease. Furthermore, as
expected, the adversarial accuracy decreased steadily with increasing step size 𝜖.
For 𝜖 = 0.08, the studied models achieved adversarial accuracy values from 10%
to 14% on SVHN. Considering that SVHN consists of ten mutually exclusive
classes, this can be considered random guessing.

As for the comparison between the models, we find that models with higher
weights on the classification loss, i.e., DHM-4, DHM-5 and discriminative
DHM, perform slightly better. Moreover, compared to the ResNet-18 baseline,
hybrid modeling via latent variable coupling does not provide any significant
advantages in terms of adversarial accuracy. Nevertheless, the DHM-5 achieved
the highest average adversarial values for all step sizes on SVHN, which can
be seen in Table 5.8. At the same time, DHM-5 also has the highest standard
deviation, which we consider less robust due to reproducibility reasons.
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Fig. 5.9: Adversarial accuracy results with FGSM for different step sizes on SVHN
(left) and CIFAR-10 (right). All values are averaged over ten runs, respectively. The
standard deviation is not shown for better readability, but can be seen in Table 5.8.

The tendency of DHMs with higher discriminative strength to yield higher
values for adversarial accuracy can be confirmed by our experiments with
CIFAR-10 in Figure 5.9b. First, DHM-4 and DHM-5 achieve the highest
adversarial accuracy values among all DHMs that were optimized with respect
to the multi-conditional objective, as in the case above. Second, the purely
discriminative baselines, the discriminative DHM and the ResNet-18, together
achieved the highest adversarial accuracy values for all step sizes. However,
in contrast to the experiments on SVHN, the adversarial accuracies do not
decrease to about 10% at a step size of 𝜖 = 0.08, but end up at about 20%
to 27%. A hypothetical possibility is that the optimization with respect to
SVHN is less difficult and therefore the gradients used for FGSM contain more
information, which negatively affects the accuracy.

Adversarial Accuracy in %
Dataset Model 𝜖 = 0.02 𝜖 = 0.03 𝜖 = 0.04 𝜖 = 0.05 𝜖 = 0.06 𝜖 = 0.07 𝜖 = 0.08

SVHN

ResNet-18 46.14 ± 2.09 33.33 ± 2.73 25.37 ± 3.10 20.08 ± 3.25 16.42 ± 3.30 13.82 ± 3.27 11.89 ± 3.18
Disc. DHM 48.99 ± 1.66 36.31 ± 2.17 27.78 ± 2.54 22.07 ± 2.69 18.02 ± 2.78 15.06 ± 2.81 12.86 ± 2.76

DHM-0 45.05 ± 1.19 32.07 ± 1.36 23.95 ± 1.49 18.62 ± 1.57 15.00 ± 1.60 12.40 ± 1.66 10.56 ± 1.62
DHM-1 44.66 ± 1.65 32.08 ± 1.55 24.09 ± 1.55 18.79 ± 1.57 15.14 ± 1.55 12.49 ± 1.47 10.55 ± 1.40
DHM-2 43.43 ± 1.63 30.72 ± 1.86 22.83 ± 1.90 17.64 ± 1.78 14.00 ± 1.65 11.51 ± 1.59 9.67 ± 1.58
DHM-3 45.73 ± 1.35 33.00 ± 2.13 24.65 ± 2.47 19.06 ± 2.65 15.20 ± 2.65 12.45 ± 2.61 10.47 ± 2.55
DHM-4 48.62 ± 1.67 35.79 ± 2.35 27.10 ± 2.66 21.12 ± 2.80 17.03 ± 2.83 14.09 ± 2.77 11.94 ± 2.67
DHM-5 49.47 ± 2.11 36.66 ± 3.19 28.13 ± 3.84 22.31 ± 4.35 18.26 ± 4.65 15.32 ± 4.78 13.19 ± 4.87

CIFAR-10

ResNet-18 57.45 ± 1.21 45.90 ± 1.73 38.67 ± 2.21 33.89 ± 2.65 30.57 ± 2.97 28.17 ± 3.33 26.47 ± 3.48
Disc. DHM 58.00 ± 1.63 46.13 ± 2.00 38.30 ± 2.09 32.97 ± 2.06 29.39 ± 2.11 26.77 ± 2.11 24.78 ± 2.26

DHM-0 54.51 ± 0.90 41.63 ± 0.75 33.37 ± 1.20 27.88 ± 1.60 24.25 ± 1.80 21.57 ± 1.92 19.56 ± 2.02
DHM-1 56.21 ± 1.97 43.86 ± 2.26 35.86 ± 2.44 30.35 ± 2.44 26.54 ± 2.48 23.80 ± 2.45 21.76 ± 2.53
DHM-2 56.22 ± 1.35 43.67 ± 1.71 35.41 ± 1.87 29.90 ± 2.00 26.04 ± 2.01 23.35 ± 2.09 21.30 ± 2.10
DHM-3 56.04 ± 1.45 44.02 ± 1.70 36.44 ± 1.77 31.23 ± 1.94 27.59 ± 2.01 24.98 ± 2.16 23.03 ± 2.23
DHM-4 57.30 ± 1.41 45.40 ± 1.66 37.33 ± 1.75 32.05 ± 1.86 28.42 ± 2.00 25.83 ± 2.06 23.84 ± 2.15
DHM-5 57.29 ± 1.84 45.13 ± 1.79 37.17 ± 1.93 32.00 ± 2.28 28.43 ± 2.60 25.78 ± 2.95 23.87 ± 3.17

Tab. 5.8: Adversarial accuracy values obtained on test set of SVHN and CIFAR-10.

Chapter 5. Numerical Experiments
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Conclusion. We have shown that adversarial attacks via the FGSM with
relatively small step sizes have strong impacts on the accuracy of all investigated
models, including DHMs. Interestingly, the regularization effect of the multi-
conditional objective of the DHMs does not yield any robustness advantages
over purely discriminative models such as the baselines, i.e., discriminative
DHM and ResNet-18. On the contrary, considering that the DHMs with higher
discriminative strengths led to higher adversarial accuracies, this suggests that
interpolation between discriminative and generative approaches does not offer
any advantages for DHMs. However, it should be emphasized that tuning
hyperparameters of the studied models can have strong effects on performance,
and in our experimental setup we used exactly the same training configurations
for all models.

Also, note that the models appear to be more robust against FGSM when the
dataset is semantically more challenging. Therefore, further analysis could be
performed with more challenging datasets such as CIFAR-100 or ImageNet
[Deng et al. (2009)] to gain better insight into the adversarial robustness of
DHMs. However, given our results, we do not consider DHMs to be significantly
more robust against adversarial attacks via FGSM or better suited for mission-
critical tasks than the baselines.

Results
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6 Discussion and Outlook

During the course of this work, several thousand models have been trained
to investigate the robustness of Hybrid Discriminative-Generative Models
(HDGMs) or, more precisely, Deep Hybrid Models (DHMs). Robustness is often
used as a general term, but in this work we have focused on quantitative metrics,
i.e., test accuracy, Expected Calibration Error (ECE), Out-Of-Distribution
(OOD) detection and adversarial accuracy in the context of the Fast Gradient
Sign Method (FGSM). High scores with respect to these metrics are critical
and mandatory for the use of probabilistic models in mission-critical tasks.
We instantiated HDGMs with Deep Neural Networks (DNNs), resulting in
DHMs, which were studied with respect to the above metrics. The analysis was
performed numerically using benchmark image recognition datasets, namely
Street View House Numbers (SVHN) and CIFAR-10.

We were able to show that the joint optimization of DHMs achieves similar
results compared to state-of-the-art DNN architectures, such as supervised
Residual Neural Networks (ResNets) and self-supervised 𝛽-Variational Autoen-
coders (VAEs). However, regardless of the discriminative strength, the test
accuracy of DHMs did not exceed that of the purely discriminative baselines,
namely the discriminative DHM and the supervised ResNet-18. This clearly
challenges the results reported in [Kuleshov and Ermon (2017)], where a small
gain in accuracy over the purely discriminative setting was shown. Since we
consider accuracy to be crucial in our experiments, this is a clear disadvantage
of the DHMs.

Moreover, we showed that the problem common to deep generative models of
assigning higher log-likelihoods to near-OOD data also applies to DHMs. This
is particularly interesting because it shows that the regularization effect of the
multi-conditional objective is not sufficient to improve near-OOD detection
ability. Overall, we find that the OOD detection did not significantly improve
over either the purely generative baseline or the purely discriminative baselines.
However, our results do not indicate that our DHMs performed worse either.
In the contrary, the ability of DHMs to provide both 𝑝𝜃(y|x) and 𝑝𝜃(x) can be
useful when OOD detection over either quantity fails.

Chapter 6. Discussion and Outlook
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Regarding the ECE, we were able to show that interpolation between dis-
criminative and generative approaches has an impact, albeit small, on the
calibration. This resulted in an improvement compared to our baselines for
most configurations of the DHMs. Nevertheless, in consideration of the magni-
tude of the differences, the improvements over the baselines are not remarkable
and may differ for other experimental setups. Given our results, we find that
instantiating HDGMs with DNNs does not provide a potential solution to
obtain non-overconfident probabilistic discriminative models.

Finally, the DHM-5 showed the highest test accuracy in the adversarial robust-
ness framework for all step sizes of the FGSM on SVHN, which is noteworthy.
However, this could not be reproduced on CIFAR-10. In addition, the standard
deviation of the models that achieved the highest adversarial accuracies were
often higher than that of the models that performed slightly worse. It is there-
fore likely that further experiments with small changes in the configuration of
the training could lead to different results.

In general, we find that the results of the DHMs are comparable to those of
the baselines in terms of robustness. Basically, DHMs are subject to the same
problems as the discriminative and generative baselines, although they have
been optimized with respect to a different objective. This is not surprising,
since the DHMs are formed on the basis of the discriminative and generative
baselines. However, we had hoped that the regularization effect of the multi-
conditional objective might have a significant positive impact on the robustness
metrics. It should be noted, however, that the DHMs may be useful for special
cases where both 𝑝𝜃(y|x) and 𝑝𝜃(x) are needed in a single forward pass.

Now we would like to point out some drawbacks of the experimental setup
and provide possible research directions regarding DHMs. First, all numerical
experiments were performed with image recognition benchmark datasets. Thus,
our experiments represent only one area of many in which probabilistic models
are used. In addition, we limited our analysis to the SVHN and CIFAR-10
datasets, except for CIFAR-100, which constituted the OOD dataset. Clearly,
more challenging benchmark datasets such as ImageNet are well-studied and
could be utilized to perform further experiments. Moreover, analyzing the
robustness of probabilistic models is a broad area where many metrics and
methods have been developed. We propose to use advanced OOD detection
methods such as the Density of States Estimator (DoSE) [Ren et al. (2019)]
that address the problem of assigning higher probabilities to OOD samples
associated with deep generative models. For adversarial accuracy, one could
utilize established datasets such as ImageNet-C, ImageNet Adversarial, and
ImageNet Rendition, which would allow comparison with other peer-reviewed
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articles [Hendrycks and Dietterich (2019); Hendrycks et al. (2021a); Hendrycks
et al. (2021b)].

We also believe that DHMs have potential capabilities in semi-supervised learn-
ing as reported in [Kuleshov and Ermon (2017)], which we have not addressed
in this work. We therefore propose to further investigate the DHMs in the
domain of semi-supervised learning. Moreover, due to the great flexibility of
the underlying framework of DHMs, various combinations of discriminative
and generative models can be explored. For example, instead of VAEs, one
could use normalizing flow models [Rezende and Mohamed (2015)] or Gen-
erative Adversarial Nets (GANs) as the generative component. However, we
experienced difficulties in the joint optimization of multiple DNNs coupled via
latent variables, which may prove to be another drawback of DHMs. Finally,
we would like to note that given the speed of progress in deep learning, DHMs
provide a versatile tool to integrate upcoming probabilistic models into a single
model.

Chapter 6. Discussion and Outlook
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