

# **Unified Taxonomy in AI Safety:** Watermarks, Adversarial Defenses, and Transferable Attacks

Grzegorz Głuch, Sai Ganesh Nagarajan\*, and Berkant Turan\*

EPFL, TU Berlin & Zuse Institute Berlin <sup>6</sup> Equal contribution.

# Learning Task

- Learning Task: A classification based learning task  $\mathcal{L}$  is a pair  $(\mathcal{D}, h)$  of a distribution  $\mathcal{D}$ , supp $(\mathcal{D}) \subseteq \mathcal{X}$ , and a ground truth map to a set of labels  $h : \mathcal{X} \to \mathcal{Y} \cup \{\bot\}$ .
- Risk Measure: To every  $f : \mathcal{X} \to \mathcal{Y}$ , we associate  $\operatorname{err}(f) := \mathbb{E}_{x \sim \mathcal{D}}[f(x) \neq h(x)]$ .
- Information Access: We assume all parties have access to i.i.d. samples (x, h(x)), where  $x \sim \mathcal{D}$ , although  $\mathcal{D}$  and h are unknown to the parties.

# Every learning task has at least one of the three:



- Uniqueness (training from scratch) : There exists succinctly representable  $\mathbf{P}$  running in time T such that w.h.p.,  $err(\mathbf{x}, \mathbf{y}) \leq 2\epsilon$ .
- Unremovability (fast P give high-error): For every succinctly representable **P** running in time t, w.h.p.,  $\operatorname{err}(\mathbf{x},\mathbf{y}) > 2\epsilon.$
- Undetectability (fast P accept tests): For every succinctly representable  $\mathbf{P}$  running in time t, the advantage in distinguishing  $\mathbf{x} \sim \mathcal{D}^q$  from  $\mathbf{x} := \mathbf{V}$  is small.

Note that in the case of Uniqueness,  $\mathbf{P}$  runs in time T.

 Completeness (if x is from correct distribution, P does accept the test): When  $\mathbf{x} \sim \mathcal{D}^q$ , then w.h.p.

• Correctness (f has low error): W.h.p.,  $err(f) \le \epsilon$ .

b = 0.

Soundness (fast attacks creating x on which f makes **mistakes are detected)**: For every succinctly representable V running in time t, we have that w.h.p.,

 $\operatorname{err}(\mathbf{x}, f(\mathbf{x})) \leq 7\epsilon$  or b = 1.

• Transferability (fast P give high-error answers): For every succinctly representable  $\mathbf{P}$  running in time t, w.h.p.,

Х

У

models."

Prover P

(runs in t)

 $\operatorname{err}(\mathbf{x},\mathbf{y}) > 2\epsilon.$ 

• Undetectability (fast P accept tests): For every succinctly representable **P** running in time t, the advantage in distinguishing  $\mathbf{x} \sim \mathcal{D}^q$  from  $\mathbf{x} := \mathbf{V}$  is small.

# **Theorem 2** (Transferable Attack for Cryptography based Learning Task)

There exists a distribution  $\mathcal{D}$  and a hypothesis class  $\mathcal{H}$  for which there is a Transferable Attack  $\mathbf{V}_{TA}$  such that if h is sampled uniformly from  $\mathcal{H}$ , then

 $\mathbf{V}_{\mathsf{TA}} \in \mathsf{TransfAttack}\left(\left(\mathcal{D},h\right),\epsilon,T=O\left(1/\epsilon\right),t=1/\epsilon^{2}\right).$ 

Moreover, for every  $\epsilon$ ,  $O(1/\epsilon)$  time and  $O(1/\epsilon)$  samples are sufficient, while  $\Omega(1/\epsilon)$ samples (and time) are necessary to, on average, learn w.h.p. a classifier of error  $\epsilon$ .



### Fully Homomorphic Encryption (FHE) Cryptographic primitive allowing computation on encrypted data without decrypting it.

- $pk,sk = KeyGen(1^n)$ : Samples public and secret key.
- $\psi = \text{Enc}(\text{pk}, x)$ : Encrypts x with public key pk.
- $\psi_C = \text{Eval}(\text{pk}, C, \psi)$ : Given public key pk, encrypted input  $\psi$ , and circuit C, it returns an encryption of an evaluation of C on the input encrypted to  $\psi$ .
- $y = Dec(sk, \psi_C)$ : Given secret key sk and an encrypted evaluation of C, it returns the result in the clear.

# **Theorem 1 (Unified Taxonomy)**

For every learning task  $\mathcal{L}$  and  $\epsilon \in (0, \frac{1}{2})$ ,  $T \in \mathbb{N}$ , such that there exists a learner running in time T that, w.h.p., learns f such that  $err(f) \leq \epsilon$ , at least one of

Watermark 
$$\left(\mathcal{L}, \epsilon, T, T^{1/\sqrt{\log(T)}}\right)$$
,  
Defense  $\left(\mathcal{L}, \epsilon, T^{1/\sqrt{\log(T)}}, O(T)\right)$ ,  
TransfAttack  $\left(\mathcal{L}, \epsilon, T, T\right)$ 

### exists.

Notably, when a **Defense does not exist**, there **must be a Watermark or a Transferable** Attack, which goes beyond the prior understanding of the existence of adversarial attacks.

## **Examples (Bounded VC-Dimension)**



Overview of learning tasks with Watermarks, Adversarial Defenses, and Transferable Attacks for **bounded VC dimension**.

**Example 1 (Adversarial Defense for bounded VC-dimension).** There exists an algorithm  $\mathbf{P}_{\mathsf{D}}$  that is an Adversarial Defense for every hypothesis class  $\mathcal{H}$  of VC-dimension d, i.e. for every  $h \in \mathcal{H}$  and a distribution  $\mathcal{D}$ 

 $\mathbf{P}_{\mathsf{D}} \in \mathsf{Defense}\left((\mathcal{D}, h), \epsilon, t = \infty, T = \mathsf{poly}\left(d/\epsilon\right)\right).$ 

 $\mathbf{P}_{\rm D}$  is an adaptation of the defense from [Goldwasser et al. 2020].

**Example 2 (Watermark for bounded VC-dimension against fast adversaries).** For every  $d \in \mathbb{N}$  there exists a learning task  $\mathcal{L}$  with a hypothesis class of VC-dimension d for which there is a Watermark  $\mathbf{V}_{W}$ , i.e.

 $\mathbf{V}_{\mathsf{W}} \in \mathsf{Watermark}\left(\mathcal{L}, \epsilon, T = O\left(\frac{d}{\epsilon}\right), t = \frac{d}{100}\right).$ 

### **Open Questions**

Is it possible to generalize the definitions and obtain a similar taxonomy for generative learning tasks?

Key challenges: verification vs. generation, quality oracles [Zhang et al., 2023], selfevaluation.

