

Unified Taxonomy in AI Safety: Watermarks, Adversarial Defenses, and Transferable Attacks

Grzegorz Głuch, Sai Ganesh Nagarajan[∗] , and Berkant Turan ∗

EPFL, TU Berlin & Zuse Institute Berlin [∗] Equal contribution.

Learning Task

- **Berlin Mathematics Research Center**
- **-** Learning Task: A classification based learning task $\mathcal L$ is a pair $(\mathcal D, h)$ of a distribution $\mathcal D$, supp $(\mathcal D) \subseteq \mathcal X$, and a ground truth map to a set of labels $h : \mathcal X \to \mathcal Y \cup \{\bot\}$.
- *Risk Measure:* To every $f: \mathcal{X} \to \mathcal{Y}$, we associate $err(f) := \mathbb{E}_{x \sim \mathcal{D}}[f(x) \neq h(x)].$
- *Information Access:* We assume all parties have access to i.i.d. samples (x, h(x)), where x ∼ D, although D and h are unknown to the parties.

Every learning task has at least one of the three:

-
- **Uniqueness (training from scratch)** : There exists succinctly representable **P** running in time T such that w.h.p., $err(\mathbf{x}, \mathbf{y}) \leq 2\epsilon$.
- **Unremovability (fast P give high-error)**: For every succinctly representable **P** running in time t , w.h.p., $err(\mathbf{x}, \mathbf{y}) > 2\epsilon$.
- Undetectability (fast P accept tests): For every succinctly representable **P** running in time t , the advantage in distinguishing $\mathbf{x} \sim \mathcal{D}^q$ from $\mathbf{x} := \mathbf{V}$ is small.

Note that in the case of Uniqueness, **P** runs in time T .

Correctness (f has low error): W.h.p., $err(f) \leq \epsilon$.

• Completeness (if x is from correct distribution, P does accept the test): When $\mathbf{x} \sim \mathcal{D}^q$, then w.h.p.

 $b=0.$

Soundness (fast attacks creating x on which f makes mistakes are detected): For every succinctly representable **V** running in time t , we have that w.h.p.,

 $err(\mathbf{x}, f(\mathbf{x})) \le 7\epsilon$ or $b = 1$.

Transferability (fast P give high-error answers): For every succinctly representable **P** running in time t , w.h.p.,

 $err(\mathbf{x}, \mathbf{y}) > 2\epsilon$.

• Undetectability (fast P accept tests): For every succinctly representable **P** running in time t , the advantage in distinguishing $\mathbf{x} \sim \mathcal{D}^q$ from $\mathbf{x} := \mathbf{V}$ is small.

Example 1 (Adversarial Defense for bounded VC-dimension). *There exists an algorithm* \mathbf{P}_{D} *that is an Adversarial Defense for every hypothesis class* $\mathcal H$ *of VC-dimension d, i.e. for every* $h \in \mathcal{H}$ and a distribution \mathcal{D}

 $\mathbf{P}_{\mathsf{D}} \in \mathsf{Defense}\left((\mathcal{D},h), \epsilon, t = \infty, T = \mathsf{poly}\left(d/\epsilon\right)\right).$

 \mathbf{P}_{D} is an adaptation of the defense from [Goldwasser et al. 2020].

Example 2 (Watermark for bounded VC-dimension against fast adversaries). *For every* d ∈ N *there exists a learning task* L *with a hypothesis class of VC-dimension* d *for which there is a Watermark* V_{W} *, i.e.*

 $\mathbf{V}_{\mathsf{W}} \in \mathsf{Watermark}\left(\mathcal{L}, \epsilon, T = O\left(d/\epsilon\right), t = d/100\right).$

Prover P

(runs in t)

Theorem 1 (Unified Taxonomy)

- $pk, sk = KeyGen(1ⁿ)$: Samples public and secret key.
- $\bullet \psi = \text{Enc}(pk, x)$: Encrypts x with public key pk.
- $\psi_C = \text{Eval}(pk, C, \psi)$: Given public key pk, encrypted input ψ , and circuit C, it returns an encryption of an evaluation of C on the input encrypted to ψ .
- $y = \text{Dec}(\text{sk}, \psi_C)$: Given secret key sk and an encrypted evaluation of C , it returns the result in the clear.

For every learning task L and $\epsilon \in (0, \frac{1}{2})$ $(\frac{1}{2})$, $T \in \mathbb{N}$, such that there exists a learner running in *time T that, w.h.p., learns f such that* $err(f) \leq \epsilon$, *at least one of*

Watermark
$$
(\mathcal{L}, \epsilon, T, T^{1/\sqrt{\log(T)}})
$$
,
Defense $(\mathcal{L}, \epsilon, T^{1/\sqrt{\log(T)}}, O(T))$,
TransfAttack $(\mathcal{L}, \epsilon, T, T)$

exists.

Notably, when a Defense does not exist, there must be a Watermark or a Transferable Attack, which goes beyond the prior understanding of the existence of adversarial attacks.

Examples (Bounded VC-Dimension)

Overview of learning tasks with *Watermarks*, *Adversarial Defenses*, and *Transferable Attacks* for bounded VC dimension.

Open Questions

Is it possible to generalize the definitions and obtain a similar taxonomy for generative learning tasks?

Key challenges: verification vs. generation, quality oracles [Zhang et al., 2023], selfevaluation.

Theorem 2 (Transferable Attack for Cryptography based Learning Task)

There exists a distribution $\mathcal D$ and a hypothesis class $\mathcal H$ for which there is a Transferable Attack V_{TA} such that if h is sampled uniformly from H, then

 $\mathbf{V}_{\textsf{TA}}\in \textsf{TransfAttack}\left(\left(\mathcal{D},h\right), \epsilon, T=O\left(1/\epsilon\right), t=1/\epsilon^2\right).$

Moreover, for every ϵ , $O(1/\epsilon)$ time and $O(1/\epsilon)$ samples are sufficient, while $\Omega(1/\epsilon)$ samples (and time) are necessary to, on average, learn w.h.p. a classifier of error ϵ .

Fully Homomorphic Encryption (FHE) Cryptographic primitive allowing computation on encrypted data without decrypting it.

